87 lines
2.8 KiB
Python
87 lines
2.8 KiB
Python
from langchain.chains import RetrievalQA
|
|
from langchain.prompts.chat import (
|
|
ChatPromptTemplate,
|
|
SystemMessagePromptTemplate,
|
|
HumanMessagePromptTemplate,
|
|
)
|
|
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
|
from langchain.vectorstores import FAISS
|
|
from langchain.document_loaders import UnstructuredFileLoader
|
|
from chatglm_llm import ChatGLM
|
|
|
|
# Global Parameters
|
|
EMBEDDING_MODEL = "text2vec"
|
|
VECTOR_SEARCH_TOP_K = 6
|
|
LLM_MODEL = "chatglm-6b"
|
|
LLM_HISTORY_LEN = 3
|
|
|
|
# Show reply with source text from input document
|
|
REPLY_WITH_SOURCE = True
|
|
|
|
|
|
embedding_model_dict = {
|
|
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
|
|
"ernie-base": "nghuyong/ernie-3.0-base-zh",
|
|
"text2vec": "GanymedeNil/text2vec-large-chinese",
|
|
}
|
|
|
|
llm_model_dict = {
|
|
"chatglm-6b": "THUDM/chatglm-6b",
|
|
"chatglm-6b-int4": "THUDM/chatglm-6b-int4",
|
|
"chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe",
|
|
}
|
|
|
|
chatglm = ChatGLM()
|
|
chatglm.load_model(model_name_or_path=llm_model_dict[LLM_MODEL])
|
|
chatglm.history_len = LLM_HISTORY_LEN
|
|
|
|
def init_knowledge_vector_store(filepath):
|
|
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[EMBEDDING_MODEL], )
|
|
loader = UnstructuredFileLoader(filepath, mode="elements")
|
|
docs = loader.load()
|
|
|
|
vector_store = FAISS.from_documents(docs, embeddings)
|
|
return vector_store
|
|
|
|
|
|
def get_knowledge_based_answer(query, vector_store, chat_history=[]):
|
|
system_template = """基于以下内容,简洁和专业的来回答用户的问题。
|
|
如果无法从中得到答案,请说 "不知道" 或 "没有足够的相关信息",不要试图编造答案。答案请使用中文。
|
|
----------------
|
|
{context}
|
|
----------------
|
|
"""
|
|
messages = [
|
|
SystemMessagePromptTemplate.from_template(system_template),
|
|
HumanMessagePromptTemplate.from_template("{question}"),
|
|
]
|
|
prompt = ChatPromptTemplate.from_messages(messages)
|
|
|
|
chatglm.history = chat_history
|
|
knowledge_chain = RetrievalQA.from_llm(
|
|
llm=chatglm,
|
|
retriever=vector_store.as_retriever(search_kwargs={"k": VECTOR_SEARCH_TOP_K}),
|
|
prompt=prompt
|
|
)
|
|
|
|
knowledge_chain.return_source_documents = True
|
|
|
|
result = knowledge_chain({"query": query})
|
|
chatglm.history[-1][0] = query
|
|
return result, chatglm.history
|
|
|
|
|
|
if __name__ == "__main__":
|
|
filepath = input("Input your local knowledge file path 请输入本地知识文件路径:")
|
|
vector_store = init_knowledge_vector_store(filepath)
|
|
history = []
|
|
while True:
|
|
query = input("Input your question 请输入问题:")
|
|
resp, history = get_knowledge_based_answer(query=query,
|
|
vector_store=vector_store,
|
|
chat_history=history)
|
|
if REPLY_WITH_SOURCE:
|
|
print(resp)
|
|
else:
|
|
print(resp["result"])
|