Langchain-Chatchat/server/chat/bing_search_chat.py

70 lines
3.0 KiB
Python

from langchain.utilities import BingSearchAPIWrapper
from configs.model_config import BING_SEARCH_URL, BING_SUBSCRIPTION_KEY
from fastapi import Body
from fastapi.responses import StreamingResponse
from configs.model_config import (llm_model_dict, LLM_MODEL, SEARCH_ENGINE_TOP_K, PROMPT_TEMPLATE)
from server.chat.utils import wrap_done
from langchain.chat_models import ChatOpenAI
from langchain import LLMChain
from langchain.callbacks import AsyncIteratorCallbackHandler
from typing import AsyncIterable
import asyncio
from langchain.prompts import PromptTemplate
from langchain.docstore.document import Document
def bing_search(text, result_len=SEARCH_ENGINE_TOP_K):
if not (BING_SEARCH_URL and BING_SUBSCRIPTION_KEY):
return [{"snippet": "please set BING_SUBSCRIPTION_KEY and BING_SEARCH_URL in os ENV",
"title": "env info is not found",
"link": "https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html"}]
search = BingSearchAPIWrapper(bing_subscription_key=BING_SUBSCRIPTION_KEY,
bing_search_url=BING_SEARCH_URL)
return search.results(text, result_len)
def search_result2docs(search_results):
docs = []
for result in search_results:
doc = Document(page_content=result["snippet"] if "snippet" in result.keys() else "",
metadata={"source": result["link"] if "link" in result.keys() else "",
"filename": result["title"] if "title" in result.keys() else ""})
docs.append(doc)
return docs
def bing_search_chat(query: str = Body(..., description="用户输入", example="你好"),
top_k: int = Body(SEARCH_ENGINE_TOP_K, description="检索结果数量"),
):
async def bing_search_chat_iterator(query: str,
top_k: int,
) -> AsyncIterable[str]:
callback = AsyncIteratorCallbackHandler()
model = ChatOpenAI(
streaming=True,
verbose=True,
callbacks=[callback],
openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
model_name=LLM_MODEL
)
results = bing_search(query, result_len=top_k)
docs = search_result2docs(results)
context = "\n".join([doc.page_content for doc in docs])
prompt = PromptTemplate(template=PROMPT_TEMPLATE, input_variables=["context", "question"])
chain = LLMChain(prompt=prompt, llm=model)
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
chain.acall({"context": context, "question": query}),
callback.done),
)
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield token
await task
return StreamingResponse(bing_search_chat_iterator(query, top_k), media_type="text/event-stream")