667 lines
20 KiB
Python
667 lines
20 KiB
Python
# 该文件包含webui通用工具,可以被不同的webui使用
|
||
from typing import *
|
||
from pathlib import Path
|
||
import os
|
||
from configs.model_config import (
|
||
EMBEDDING_MODEL,
|
||
KB_ROOT_PATH,
|
||
LLM_MODEL,
|
||
llm_model_dict,
|
||
VECTOR_SEARCH_TOP_K,
|
||
SEARCH_ENGINE_TOP_K,
|
||
)
|
||
import httpx
|
||
import asyncio
|
||
from server.chat.openai_chat import OpenAiChatMsgIn
|
||
from fastapi.responses import StreamingResponse
|
||
import contextlib
|
||
import json
|
||
from io import BytesIO
|
||
import pandas as pd
|
||
from server.knowledge_base.utils import list_kbs_from_folder, list_docs_from_folder
|
||
from server.db.repository.knowledge_base_repository import get_kb_detail
|
||
from server.db.repository.knowledge_file_repository import get_file_detail
|
||
|
||
|
||
def set_httpx_timeout(timeout=60.0):
|
||
'''
|
||
设置httpx默认timeout到60秒。
|
||
httpx默认timeout是5秒,在请求LLM回答时不够用。
|
||
'''
|
||
httpx._config.DEFAULT_TIMEOUT_CONFIG.connect = timeout
|
||
httpx._config.DEFAULT_TIMEOUT_CONFIG.read = timeout
|
||
httpx._config.DEFAULT_TIMEOUT_CONFIG.write = timeout
|
||
|
||
|
||
KB_ROOT_PATH = Path(KB_ROOT_PATH)
|
||
set_httpx_timeout()
|
||
|
||
|
||
def run_async(cor):
|
||
'''
|
||
在同步环境中运行异步代码.
|
||
'''
|
||
try:
|
||
loop = asyncio.get_event_loop()
|
||
except:
|
||
loop = asyncio.new_event_loop()
|
||
return loop.run_until_complete(cor)
|
||
|
||
|
||
def iter_over_async(ait, loop):
|
||
'''
|
||
将异步生成器封装成同步生成器.
|
||
'''
|
||
ait = ait.__aiter__()
|
||
async def get_next():
|
||
try:
|
||
obj = await ait.__anext__()
|
||
return False, obj
|
||
except StopAsyncIteration:
|
||
return True, None
|
||
while True:
|
||
done, obj = loop.run_until_complete(get_next())
|
||
if done:
|
||
break
|
||
yield obj
|
||
|
||
|
||
class ApiRequest:
|
||
'''
|
||
api.py调用的封装,主要实现:
|
||
1. 简化api调用方式
|
||
2. 实现无api调用(直接运行server.chat.*中的视图函数获取结果),无需启动api.py
|
||
'''
|
||
def __init__(
|
||
self,
|
||
base_url: str = "http://127.0.0.1:7861",
|
||
timeout: float = 60.0,
|
||
no_remote_api: bool = False, # call api view function directly
|
||
):
|
||
self.base_url = base_url
|
||
self.timeout = timeout
|
||
self.no_remote_api = no_remote_api
|
||
|
||
def _parse_url(self, url: str) -> str:
|
||
if (not url.startswith("http")
|
||
and self.base_url
|
||
):
|
||
part1 = self.base_url.strip(" /")
|
||
part2 = url.strip(" /")
|
||
return f"{part1}/{part2}"
|
||
else:
|
||
return url
|
||
|
||
def get(
|
||
self,
|
||
url: str,
|
||
params: Union[Dict, List[Tuple], bytes] = None,
|
||
retry: int = 3,
|
||
**kwargs: Any,
|
||
) -> Union[httpx.Response, None]:
|
||
url = self._parse_url(url)
|
||
kwargs.setdefault("timeout", self.timeout)
|
||
while retry > 0:
|
||
try:
|
||
return httpx.get(url, params=params, **kwargs)
|
||
except:
|
||
retry -= 1
|
||
|
||
async def aget(
|
||
self,
|
||
url: str,
|
||
params: Union[Dict, List[Tuple], bytes] = None,
|
||
retry: int = 3,
|
||
**kwargs: Any,
|
||
) -> Union[httpx.Response, None]:
|
||
rl = self._parse_url(url)
|
||
kwargs.setdefault("timeout", self.timeout)
|
||
async with httpx.AsyncClient() as client:
|
||
while retry > 0:
|
||
try:
|
||
return await client.get(url, params=params, **kwargs)
|
||
except:
|
||
retry -= 1
|
||
|
||
def post(
|
||
self,
|
||
url: str,
|
||
data: Dict = None,
|
||
json: Dict = None,
|
||
retry: int = 3,
|
||
stream: bool = False,
|
||
**kwargs: Any
|
||
) -> Union[httpx.Response, None]:
|
||
url = self._parse_url(url)
|
||
kwargs.setdefault("timeout", self.timeout)
|
||
while retry > 0:
|
||
try:
|
||
# return requests.post(url, data=data, json=json, stream=stream, **kwargs)
|
||
if stream:
|
||
return httpx.stream("POST", url, data=data, json=json, **kwargs)
|
||
else:
|
||
return httpx.post(url, data=data, json=json, **kwargs)
|
||
except:
|
||
retry -= 1
|
||
|
||
async def apost(
|
||
self,
|
||
url: str,
|
||
data: Dict = None,
|
||
json: Dict = None,
|
||
retry: int = 3,
|
||
**kwargs: Any
|
||
) -> Union[httpx.Response, None]:
|
||
rl = self._parse_url(url)
|
||
kwargs.setdefault("timeout", self.timeout)
|
||
async with httpx.AsyncClient() as client:
|
||
while retry > 0:
|
||
try:
|
||
return await client.post(url, data=data, json=json, **kwargs)
|
||
except:
|
||
retry -= 1
|
||
|
||
def _fastapi_stream2generator(self, response: StreamingResponse, as_json: bool =False):
|
||
'''
|
||
将api.py中视图函数返回的StreamingResponse转化为同步生成器
|
||
'''
|
||
try:
|
||
loop = asyncio.get_event_loop()
|
||
except:
|
||
loop = asyncio.new_event_loop()
|
||
|
||
for chunk in iter_over_async(response.body_iterator, loop):
|
||
if as_json and chunk:
|
||
yield json.loads(chunk)
|
||
elif chunk.strip():
|
||
yield chunk
|
||
|
||
def _httpx_stream2generator(
|
||
self,
|
||
response: contextlib._GeneratorContextManager,
|
||
as_json: bool = False,
|
||
):
|
||
'''
|
||
将httpx.stream返回的GeneratorContextManager转化为普通生成器
|
||
'''
|
||
with response as r:
|
||
for chunk in r.iter_text(None):
|
||
if as_json and chunk:
|
||
yield json.loads(chunk)
|
||
elif chunk.strip():
|
||
yield chunk
|
||
|
||
# 对话相关操作
|
||
|
||
def chat_fastchat(
|
||
self,
|
||
messages: List[Dict],
|
||
stream: bool = True,
|
||
model: str = LLM_MODEL,
|
||
temperature: float = 0.7,
|
||
max_tokens: int = 1024, # todo:根据message内容自动计算max_tokens
|
||
no_remote_api: bool = None,
|
||
**kwargs: Any,
|
||
):
|
||
'''
|
||
对应api.py/chat/fastchat接口
|
||
'''
|
||
if no_remote_api is None:
|
||
no_remote_api = self.no_remote_api
|
||
msg = OpenAiChatMsgIn(**{
|
||
"messages": messages,
|
||
"stream": stream,
|
||
"model": model,
|
||
"temperature": temperature,
|
||
"max_tokens": max_tokens,
|
||
**kwargs,
|
||
})
|
||
|
||
if no_remote_api:
|
||
from server.chat.openai_chat import openai_chat
|
||
response = openai_chat(msg)
|
||
return self._fastapi_stream2generator(response)
|
||
else:
|
||
data = msg.dict(exclude_unset=True, exclude_none=True)
|
||
response = self.post(
|
||
"/chat/fastchat",
|
||
json=data,
|
||
stream=stream,
|
||
)
|
||
return self._httpx_stream2generator(response)
|
||
|
||
def chat_chat(
|
||
self,
|
||
query: str,
|
||
history: List[Dict] = [],
|
||
no_remote_api: bool = None,
|
||
):
|
||
'''
|
||
对应api.py/chat/chat接口
|
||
'''
|
||
if no_remote_api is None:
|
||
no_remote_api = self.no_remote_api
|
||
|
||
if no_remote_api:
|
||
from server.chat.chat import chat
|
||
response = chat(query, history)
|
||
return self._fastapi_stream2generator(response)
|
||
else:
|
||
response = self.post("/chat/chat", json={"query": query, "history": history}, stream=True)
|
||
return self._httpx_stream2generator(response)
|
||
|
||
def knowledge_base_chat(
|
||
self,
|
||
query: str,
|
||
knowledge_base_name: str,
|
||
top_k: int = VECTOR_SEARCH_TOP_K,
|
||
history: List[Dict] = [],
|
||
stream: bool = True,
|
||
no_remote_api: bool = None,
|
||
):
|
||
'''
|
||
对应api.py/chat/knowledge_base_chat接口
|
||
'''
|
||
if no_remote_api is None:
|
||
no_remote_api = self.no_remote_api
|
||
|
||
data = {
|
||
"query": query,
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"top_k": top_k,
|
||
"history": history,
|
||
"stream": stream,
|
||
}
|
||
|
||
if no_remote_api:
|
||
from server.chat.knowledge_base_chat import knowledge_base_chat
|
||
response = knowledge_base_chat(**data)
|
||
return self._fastapi_stream2generator(response, as_json=True)
|
||
else:
|
||
response = self.post(
|
||
"/chat/knowledge_base_chat",
|
||
json=data,
|
||
stream=True,
|
||
)
|
||
return self._httpx_stream2generator(response, as_json=True)
|
||
|
||
def search_engine_chat(
|
||
self,
|
||
query: str,
|
||
search_engine_name: str,
|
||
top_k: int = SEARCH_ENGINE_TOP_K,
|
||
stream: bool = True,
|
||
no_remote_api: bool = None,
|
||
):
|
||
'''
|
||
对应api.py/chat/search_engine_chat接口
|
||
'''
|
||
if no_remote_api is None:
|
||
no_remote_api = self.no_remote_api
|
||
|
||
data = {
|
||
"query": query,
|
||
"search_engine_name": search_engine_name,
|
||
"top_k": top_k,
|
||
"stream": stream,
|
||
}
|
||
|
||
if no_remote_api:
|
||
from server.chat.search_engine_chat import search_engine_chat
|
||
response = search_engine_chat(**data)
|
||
return self._fastapi_stream2generator(response, as_json=True)
|
||
else:
|
||
response = self.post(
|
||
"/chat/search_engine_chat",
|
||
json=data,
|
||
stream=True,
|
||
)
|
||
return self._httpx_stream2generator(response, as_json=True)
|
||
|
||
# 知识库相关操作
|
||
|
||
def list_knowledge_bases(
|
||
self,
|
||
no_remote_api: bool = None,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/list_knowledge_bases接口
|
||
'''
|
||
if no_remote_api is None:
|
||
no_remote_api = self.no_remote_api
|
||
|
||
if no_remote_api:
|
||
from server.knowledge_base.kb_api import list_kbs
|
||
response = run_async(list_kbs())
|
||
return response.data
|
||
else:
|
||
response = self.get("/knowledge_base/list_knowledge_bases")
|
||
return response.json().get("data")
|
||
|
||
def create_knowledge_base(
|
||
self,
|
||
knowledge_base_name: str,
|
||
vector_store_type: str = "faiss",
|
||
embed_model: str = EMBEDDING_MODEL,
|
||
no_remote_api: bool = None,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/create_knowledge_base接口
|
||
'''
|
||
if no_remote_api is None:
|
||
no_remote_api = self.no_remote_api
|
||
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"vector_store_type": vector_store_type,
|
||
"embed_model": embed_model,
|
||
}
|
||
|
||
if no_remote_api:
|
||
from server.knowledge_base.kb_api import create_kb
|
||
response = run_async(create_kb(**data))
|
||
return response.dict()
|
||
else:
|
||
response = self.post(
|
||
"/knowledge_base/create_knowledge_base",
|
||
json=data,
|
||
)
|
||
return response.json()
|
||
|
||
def delete_knowledge_base(
|
||
self,
|
||
knowledge_base_name: str,
|
||
no_remote_api: bool = None,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/delete_knowledge_base接口
|
||
'''
|
||
if no_remote_api is None:
|
||
no_remote_api = self.no_remote_api
|
||
|
||
if no_remote_api:
|
||
from server.knowledge_base.kb_api import delete_kb
|
||
response = run_async(delete_kb(knowledge_base_name))
|
||
return response.dict()
|
||
else:
|
||
response = self.delete(
|
||
"/knowledge_base/delete_knowledge_base",
|
||
json={"knowledge_base_name": knowledge_base_name},
|
||
)
|
||
return response.json()
|
||
|
||
def list_kb_docs(
|
||
self,
|
||
knowledge_base_name: str,
|
||
no_remote_api: bool = None,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/list_docs接口
|
||
'''
|
||
if no_remote_api is None:
|
||
no_remote_api = self.no_remote_api
|
||
|
||
if no_remote_api:
|
||
from server.knowledge_base.kb_doc_api import list_docs
|
||
response = run_async(list_docs(knowledge_base_name))
|
||
return response.data
|
||
else:
|
||
response = self.get(
|
||
"/knowledge_base/list_docs",
|
||
params={"knowledge_base_name": knowledge_base_name}
|
||
)
|
||
return response.json().get("data")
|
||
|
||
def upload_kb_doc(
|
||
self,
|
||
file: Union[str, Path, bytes],
|
||
knowledge_base_name: str,
|
||
filename: str = None,
|
||
override: bool = False,
|
||
no_remote_api: bool = None,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/upload_docs接口
|
||
'''
|
||
if no_remote_api is None:
|
||
no_remote_api = self.no_remote_api
|
||
|
||
if isinstance(file, bytes): # raw bytes
|
||
file = BytesIO(file)
|
||
elif hasattr(file, "read"): # a file io like object
|
||
filename = filename or file.name
|
||
else: # a local path
|
||
file = Path(file).absolute().open("rb")
|
||
filename = filename or file.name
|
||
|
||
if no_remote_api:
|
||
from server.knowledge_base.kb_doc_api import upload_doc
|
||
from fastapi import UploadFile
|
||
from tempfile import SpooledTemporaryFile
|
||
|
||
temp_file = SpooledTemporaryFile(max_size=10 * 1024 * 1024)
|
||
temp_file.write(file.read())
|
||
temp_file.seek(0)
|
||
response = run_async(upload_doc(
|
||
UploadFile(file=temp_file, filename=filename),
|
||
knowledge_base_name,
|
||
override,
|
||
))
|
||
return response.dict()
|
||
else:
|
||
response = self.post(
|
||
"/knowledge_base/upload_doc",
|
||
data={"knowledge_base_name": knowledge_base_name, "override": override},
|
||
files={"file": (filename, file)},
|
||
)
|
||
return response.json()
|
||
|
||
def delete_kb_doc(
|
||
self,
|
||
knowledge_base_name: str,
|
||
doc_name: str,
|
||
delete_content: bool = False,
|
||
no_remote_api: bool = None,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/delete_doc接口
|
||
'''
|
||
if no_remote_api is None:
|
||
no_remote_api = self.no_remote_api
|
||
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"doc_name": doc_name,
|
||
"delete_content": delete_content,
|
||
}
|
||
|
||
if no_remote_api:
|
||
from server.knowledge_base.kb_doc_api import delete_doc
|
||
response = run_async(delete_doc(**data))
|
||
return response.dict()
|
||
else:
|
||
response = self.delete(
|
||
"/knowledge_base/delete_doc",
|
||
json=data,
|
||
)
|
||
return response.json()
|
||
|
||
def update_kb_doc(
|
||
self,
|
||
knowledge_base_name: str,
|
||
doc_name: str,
|
||
no_remote_api: bool = None,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/update_doc接口
|
||
'''
|
||
if no_remote_api is None:
|
||
no_remote_api = self.no_remote_api
|
||
|
||
if no_remote_api:
|
||
from server.knowledge_base.kb_doc_api import update_doc
|
||
response = run_async(update_doc(knowledge_base_name, doc_name))
|
||
return response.dict()
|
||
else:
|
||
response = self.delete(
|
||
"/knowledge_base/update_doc",
|
||
json={"knowledge_base_name": knowledge_base_name, "doc_name": doc_name},
|
||
)
|
||
return response.json()
|
||
|
||
def recreate_vector_store(
|
||
self,
|
||
knowledge_base_name: str,
|
||
no_remote_api: bool = None,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/recreate_vector_store接口
|
||
'''
|
||
if no_remote_api is None:
|
||
no_remote_api = self.no_remote_api
|
||
|
||
if no_remote_api:
|
||
from server.knowledge_base.kb_doc_api import recreate_vector_store
|
||
response = run_async(recreate_vector_store(knowledge_base_name))
|
||
return self._fastapi_stream2generator(response, as_json=True)
|
||
else:
|
||
response = self.post(
|
||
"/knowledge_base/recreate_vector_store",
|
||
json={"knowledge_base_name": knowledge_base_name},
|
||
)
|
||
return self._httpx_stream2generator(response, as_json=True)
|
||
|
||
|
||
def get_kb_details(api: ApiRequest) -> pd.DataFrame:
|
||
kbs_in_folder = list_kbs_from_folder()
|
||
kbs_in_db = api.list_knowledge_bases()
|
||
result = {}
|
||
|
||
for kb in kbs_in_folder:
|
||
result[kb] = {
|
||
"kb_name": kb,
|
||
"vs_type": "",
|
||
"embed_model": "",
|
||
"file_count": 0,
|
||
"create_time": None,
|
||
"in_folder": True,
|
||
"in_db": False,
|
||
}
|
||
|
||
for kb in kbs_in_db:
|
||
kb_detail = get_kb_detail(kb)
|
||
if kb_detail:
|
||
kb_detail["in_db"] = True
|
||
if kb in result:
|
||
result[kb].update(kb_detail)
|
||
else:
|
||
kb_detail["in_folder"] = False
|
||
result[kb] = kb_detail
|
||
|
||
df = pd.DataFrame(result.values(), columns=[
|
||
"kb_name",
|
||
"vs_type",
|
||
"embed_model",
|
||
"file_count",
|
||
"create_time",
|
||
"in_folder",
|
||
"in_db",
|
||
])
|
||
df.insert(0, "No", range(1, len(df) + 1))
|
||
return df
|
||
|
||
|
||
def get_kb_doc_details(api: ApiRequest, kb: str) -> pd.DataFrame:
|
||
docs_in_folder = list_docs_from_folder(kb)
|
||
docs_in_db = api.list_kb_docs(kb)
|
||
result = {}
|
||
|
||
for doc in docs_in_folder:
|
||
result[doc] = {
|
||
"kb_name": kb,
|
||
"file_name": doc,
|
||
"file_ext": os.path.splitext(doc)[-1],
|
||
"file_version": 0,
|
||
"document_loader": "",
|
||
"text_splitter": "",
|
||
"create_time": None,
|
||
"in_folder": True,
|
||
"in_db": False,
|
||
}
|
||
|
||
for doc in docs_in_db:
|
||
doc_detail = get_file_detail(kb, doc)
|
||
if doc_detail:
|
||
doc_detail["in_db"] = True
|
||
if doc in result:
|
||
result[doc].update(doc_detail)
|
||
else:
|
||
doc_detail["in_folder"] = False
|
||
result[doc] = doc_detail
|
||
|
||
df = pd.DataFrame(result.values(), columns=[
|
||
"kb_name",
|
||
"file_name",
|
||
"file_ext",
|
||
"file_version",
|
||
"document_loader",
|
||
"text_splitter",
|
||
"create_time",
|
||
"in_folder",
|
||
"in_db",
|
||
])
|
||
df.insert(0, "No", range(1, len(df) + 1))
|
||
return df
|
||
|
||
|
||
def init_vs_database(recreate_vs: bool = False):
|
||
'''
|
||
init local vector store info to database
|
||
'''
|
||
from server.db.base import Base, engine
|
||
from server.db.repository.knowledge_base_repository import add_kb_to_db, kb_exists
|
||
from server.db.repository.knowledge_file_repository import add_doc_to_db
|
||
from server.knowledge_base.utils import KnowledgeFile
|
||
|
||
Base.metadata.create_all(bind=engine)
|
||
|
||
if recreate_vs:
|
||
api = ApiRequest(no_remote_api=True)
|
||
for kb in list_kbs_from_folder():
|
||
for t in api.recreate_vector_store(kb):
|
||
print(t)
|
||
else: # add vs info to db only
|
||
for kb in list_kbs_from_folder():
|
||
if not kb_exists(kb):
|
||
add_kb_to_db(kb, "faiss", EMBEDDING_MODEL)
|
||
for doc in list_docs_from_folder(kb):
|
||
try:
|
||
kb_file = KnowledgeFile(doc, kb)
|
||
add_doc_to_db(kb_file)
|
||
except Exception as e:
|
||
print(e)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
api = ApiRequest(no_remote_api=True)
|
||
# init vector store database
|
||
init_vs_database()
|
||
|
||
# print(api.chat_fastchat(
|
||
# messages=[{"role": "user", "content": "hello"}]
|
||
# ))
|
||
|
||
# with api.chat_chat("你好") as r:
|
||
# for t in r.iter_text(None):
|
||
# print(t)
|
||
|
||
# r = api.chat_chat("你好", no_remote_api=True)
|
||
# for t in r:
|
||
# print(t)
|
||
|
||
# r = api.duckduckgo_search_chat("室温超导最新研究进展", no_remote_api=True)
|
||
# for t in r:
|
||
# print(t)
|
||
|
||
# print(api.list_knowledge_bases())
|