63 lines
2.7 KiB
Python
63 lines
2.7 KiB
Python
from fastapi import Body
|
|
from fastapi.responses import StreamingResponse
|
|
from configs.model_config import (llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE,
|
|
VECTOR_SEARCH_TOP_K)
|
|
from server.chat.utils import wrap_done
|
|
from server.utils import BaseResponse
|
|
from langchain.chat_models import ChatOpenAI
|
|
from langchain import LLMChain
|
|
from langchain.callbacks import AsyncIteratorCallbackHandler
|
|
from typing import AsyncIterable
|
|
import asyncio
|
|
from langchain.prompts import PromptTemplate
|
|
from server.knowledge_base.knowledge_base import KnowledgeBase
|
|
import json
|
|
|
|
|
|
def knowledge_base_chat(query: str = Body(..., description="用户输入", example="你好"),
|
|
knowledge_base_name: str = Body(..., description="知识库名称", example="samples"),
|
|
top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
|
|
):
|
|
if not KnowledgeBase.exists(knowledge_base_name=knowledge_base_name):
|
|
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
|
|
kb = KnowledgeBase.load(knowledge_base_name=knowledge_base_name)
|
|
|
|
async def knowledge_base_chat_iterator(query: str,
|
|
kb: KnowledgeBase,
|
|
top_k: int,
|
|
) -> AsyncIterable[str]:
|
|
callback = AsyncIteratorCallbackHandler()
|
|
model = ChatOpenAI(
|
|
streaming=True,
|
|
verbose=True,
|
|
callbacks=[callback],
|
|
openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
|
|
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
|
|
model_name=LLM_MODEL
|
|
)
|
|
docs = kb.search_docs(query, top_k)
|
|
context = "\n".join([doc.page_content for doc in docs])
|
|
prompt = PromptTemplate(template=PROMPT_TEMPLATE, input_variables=["context", "question"])
|
|
|
|
chain = LLMChain(prompt=prompt, llm=model)
|
|
|
|
# Begin a task that runs in the background.
|
|
task = asyncio.create_task(wrap_done(
|
|
chain.acall({"context": context, "question": query}),
|
|
callback.done),
|
|
)
|
|
|
|
source_documents = [
|
|
f"""出处 [{inum + 1}] [{doc.metadata["source"]}]({doc.metadata["source"]}) \n\n{doc.page_content}\n\n"""
|
|
for inum, doc in enumerate(docs)
|
|
]
|
|
|
|
async for token in callback.aiter():
|
|
# Use server-sent-events to stream the response
|
|
yield json.dumps({"answer": token,
|
|
"docs": source_documents})
|
|
await task
|
|
|
|
return StreamingResponse(knowledge_base_chat_iterator(query, kb, top_k),
|
|
media_type="text/event-stream")
|