Langchain-Chatchat/README.md

81 lines
5.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 基于本地知识的 ChatGLM 应用实现
## 介绍
🌍 [_READ THIS IN ENGLISH_](README_en.md)
🤖️ 一种利用 [ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B) + [langchain](https://github.com/hwchase17/langchain) 实现的基于本地知识的 ChatGLM 应用。
💡 受 [GanymedeNil](https://github.com/GanymedeNil) 的项目 [document.ai](https://github.com/GanymedeNil/document.ai) 和 [AlexZhangji](https://github.com/AlexZhangji) 创建的 [ChatGLM-6B Pull Request](https://github.com/THUDM/ChatGLM-6B/pull/216) 启发,建立了全部基于开源模型实现的本地知识问答应用。
✅ 本项目中 Embedding 选用的是 [GanymedeNil/text2vec-large-chinese](https://huggingface.co/GanymedeNil/text2vec-large-chinese/tree/main)LLM 选用的是 [ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B)。依托上述模型,本项目可实现全部使用**开源**模型**离线私有部署**。
## 更新信息
**[2023/04/07]** 解决加载 ChatGLM 模型时发生显存占用为双倍的问题 (感谢 [@suc16](https://github.com/suc16) 和 [@myml](https://github.com/myml))
## 使用方式
### 硬件需求
- ChatGLM-6B 模型硬件需求
| **量化等级** | **最低 GPU 显存**(推理) | **最低 GPU 显存**(高效参数微调) |
| -------------- | ------------------------- | --------------------------------- |
| FP16无量化 | 13 GB | 14 GB |
| INT8 | 8 GB | 9 GB |
| INT4 | 6 GB | 7 GB |
- Embedding 模型硬件需求
本项目中默认选用的 Embedding 模型 [GanymedeNil/text2vec-large-chinese](https://huggingface.co/GanymedeNil/text2vec-large-chinese/tree/main) 约占用显存 3GB也可修改为在 CPU 中运行。
### 1. 安装 python 依赖包
```commandline
pip install -r requirements
```
注:使用 langchain.document_loaders.UnstructuredFileLoader 进行非结构化文件接入时,可能需要依据文档进行其他依赖包的安装,请参考 [langchain 文档](https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/unstructured_file.html)
### 2. 执行 [knowledge_based_chatglm.py](knowledge_based_chatglm.py) 脚本
```commandline
python knowledge_based_chatglm.py
```
## DEMO
以问题`chatglm-6b 的局限性具体体现在哪里,如何实现改进`为例
未使用 langchain 接入本地文档时:
>ChatGLM-6B 是一个基于 GPT-3 的聊天机器人,它的局限性主要体现在以下几个方面:
>1. 语言模型的精度:GPT-3 是一种大型的语言模型,它的精度比较高,但是仍然有一些局限性。例如,它可能无法准确地理解某些方言、口音或者复杂的句子结构。
>2. 知识图谱的完整性:GPT-3 可以生成一些知识图谱,但是其完整性和准确性可能不够。例如,它可能无法准确地理解某些领域的专业知识和术语。
>3. 对话生成的连贯性:GPT-3 可以生成一些连贯的对话,但是其生成的对话可能不够自然。例如,它可能会生成一些虚假的、不连贯的对话或者误解用户的意图。
>
>为了改进 ChatGLM-6B,可以考虑以下几个方面:
>1. 提高语言模型的精度:可以通过增加训练数据、使用更好的语言模型架构、优化模型训练过程等方式来提高语言模型的精度。
>2. 增强知识图谱的完整性:可以通过增加知识图谱的维度、使用更好的知识图谱构建方法、优化知识图谱的匹配算法等方式来增强知识图谱的完整性。
>3. 提高对话生成的连贯性:可以通过增加对话生成模型的上下文信息、使用更好的上下文信息提取方法、优化对话生成模型的算法等方式来提高对话生成的连贯性。
>4. 引入更多的人类反馈:人类反馈可以帮助 ChatGLM-6B 更好地理解用户的意图和需求,从而提高对话生成的质量和准确性。可以通过引入更多的人类客服、使用人类反馈收集器等方式来引入更多的人类反馈。
使用 langchain 接入 ChatGLM-6B 项目的 README.md 文件后 ChatGLM 的回答:
>ChatGLM-6B 是一个基于深度学习的自然语言处理模型,它在回答问题方面表现出色。但是,它也有一些局限性,具体如下:
>1. 语言理解有限:ChatGLM-6B 只学习了中文自然语言,对于其他语言可能会存在理解上的局限性。
>2. 知识储备不足:ChatGLM-6B 的训练数据集只包含了中文语料,因此它可能无法回答一些非中文的问题或者某些特定领域的问题。
>3. 数据量有限:ChatGLM-6B 的训练数据集只有几百万条记录,因此它可能无法回答一些非常具体或者复杂的问题。
>
>为了改进 ChatGLM-6B,可以考虑以下几个方面:
>1. 学习更多的语言知识:可以学习其他语言的自然语言处理技术,扩大语言理解的范围。
>2. 扩大知识储备:可以收集更多的中文语料,或者使用其他语言的数据集来扩充知识储备。
>3. 增加数据量:可以使用更大的数据集来训练 ChatGLM-6B,提高模型的表现。
>4. 引入更多的评估指标:可以引入更多的评估指标来评估模型的表现,从而发现 ChatGLM-6B 存在的不足和局限性。
>5. 改进模型架构:可以改进 ChatGLM-6B 的模型架构,提高模型的性能和表现。例如,可以使用更大的神经网络或者改进的卷积神经网络结构。
## 路线图
- [x] 实现 langchain + ChatGLM-6B 本地知识应用
- [x] 基于 langchain 实现非结构化文件接入
- [ ] 基于 langchain 实现更多类型本地知识文件接入
- [ ] 利用 gradio/streamlit 实现 web ui DEMO
- [ ] 利用 fastapi 实现 API 部署方式,并实现调用 API 的 web ui DEMO