Langchain-Chatchat/README_en.md

39 KiB
Raw Blame History

LangChain-Chatchat (former Langchain-ChatGLM): A LLM application aims to implement knowledge- and search engineer- based QA based on Langchain and open-source or remote LLM api.

LangChain-Chatchat (former Langchain-ChatGLM):基于 Langchain 与 ChatGLM 等大语言模型的本地知识库问答应用实现。

Content(目录)


Introduction(介绍)

🤖 A Q&A application based on local knowledge base implemented using the idea of langchain. The goal is to build a KBQA(Knowledge based Q&A) solution that is friendly to Chinese scenarios and open source models and can run both offline and online.

💡 Inspried by document.ai and ChatGLM-6B Pull Request , we build a local knowledge base question answering application that can be implemented using an open source model or remote LLM api throughout the process. In the latest version of this project, FastChat is used to access Vicuna, Alpaca, LLaMA, Koala, RWKV and many other models. Relying on [langchain](https:// github.com/langchain-ai/langchain) , this project supports calling services through the API provided based on FastAPI, or using the WebUI based on [Streamlit](https://github.com /streamlit/streamlit) .

Relying on the open source LLM and Embedding models, this project can realize full-process offline private deployment. At the same time, this project also supports the call of OpenAI GPT API- and Zhipu API, and will continue to expand the access to various models and remote APIs in the future.

⛓️ The implementation principle of this project is shown in the graph below. The main process includes: loading files -> reading text -> text segmentation -> text vectorization -> question vectorization -> matching the top-k most similar to the question vector in the text vector -> The matched text is added to prompt as context and question -> submitted to LLM to generate an answer.

一种利用 langchain 思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。

GanymedeNil 的项目 document.aiAlexZhangji 创建的 ChatGLM-6B Pull Request 启发,建立了全流程可使用开源模型实现的本地知识库问答应用。本项目的最新版本中通过使用 FastChat 接入 Vicuna, Alpaca, LLaMA, Koala, RWKV 等模型,依托于 langchain 框架支持通过基于 FastAPI 提供的 API 调用服务,或使用基于 Streamlit 的 WebUI 进行操作。

依托于本项目支持的开源 LLM 与 Embedding 模型,本项目可实现全部使用开源模型离线私有部署。与此同时,本项目也支持 OpenAI GPT API 的调用,并将在后续持续扩充对各类模型及模型 API 的接入。

本项目实现原理如下图所示,过程包括加载文件 -> 读取文本 -> 文本分割 -> 文本向量化 -> 问句向量化 -> 在文本向量中匹配出与问句向量最相似的 top k个 -> 匹配出的文本作为上下文和问题一起添加到 prompt中 -> 提交给 LLM生成回答。

📺video introdution(原理介绍视频)

实现原理图

The main process analysis from the aspect of document process:

从文档处理角度来看,实现流程如下:

实现原理图2

🚩 The training or fined-tuning are not involved in the project, but still, one always can improve performance by do these.

本项目未涉及微调、训练过程,但可利用微调或训练对本项目效果进行优化。

🌐 AutoDL image is supported, and in v7 the codes are update to v0.2.3.

AutoDL 镜像v7 版本所使用代码已更新至本项目 v0.2.3 版本。

🐳 Docker image

💻 Run Docker with one command:

一行命令运行 Docker

docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.0

Change Log(变更日志)

plese refer to version change log

Current Features

  • Consistent LLM Service based on FastChat. The project use FastChat to provide the API service of the open source LLM models and access it in the form of OpenAI API interface to improve the loading effect of the LLM model;
  • Chain and Agent based on Langchian. Use the existing Chain implementation in langchain to facilitate subsequent access to different types of Chain, and will test Agent access;
  • Full fuction API service based on FastAPI. All interfaces can be tested in the docs automatically generated by FastAPI, and all dialogue interfaces support streaming or non-streaming output through parameters. ;
  • WebUI service based on Streamlit. With Streamlit, you can choose whether to start WebUI based on API services, add session management, customize session themes and switch, and will support different display of content forms of output in the future;
  • Abundant open source LLM and Embedding models. The default LLM model in the project is changed to THUDM/chatglm2-6b, and the default Embedding model is changed to [moka-ai/m3e-base](https:// huggingface.co/moka-ai/m3e-base), the file loading method and the paragraph division method have also been adjusted. In the future, context expansion will be re-implemented and optional settings will be added;
  • Multiply vector libraries. The project has expanded support for different types of vector libraries. Including FAISS, [Milvus](https://github.com/milvus -io/milvus), and PGVector;
  • Varied Search engines. We provide two search engines now: Bing and DuckDuckGo. DuckDuckGo search does not require configuring an API Key and can be used directly in environments with access to foreign services.

参见 版本更新日志

0.1.x 升级过来的用户请注意,需要按照开发部署过程操作,将现有知识库迁移到新格式,具体见知识库初始化与迁移

0.2.0 版本与 0.1.x 版本区别

  1. 使用 FastChat 提供开源 LLM 模型的 API以 OpenAI API 接口形式接入,提升 LLM 模型加载效果;
  2. 使用 langchain 中已有 Chain 的实现,便于后续接入不同类型 Chain并将对 Agent 接入开展测试;
  3. 使用 FastAPI 提供 API 服务,全部接口可在 FastAPI 自动生成的 docs 中开展测试,且所有对话接口支持通过参数设置流式或非流式输出;
  4. 使用 Streamlit 提供 WebUI 服务,可选是否基于 API 服务启动 WebUI增加会话管理可以自定义会话主题并切换且后续可支持不同形式输出内容的显示
  5. 项目中默认 LLM 模型改为 THUDM/chatglm2-6b,默认 Embedding 模型改为 moka-ai/m3e-base,文件加载方式与文段划分方式也有调整,后续将重新实现上下文扩充,并增加可选设置;
  6. 项目中扩充了对不同类型向量库的支持,除支持 FAISS 向量库外,还提供 Milvus, PGVector 向量库的接入;
  7. 项目中搜索引擎对话,除 Bing 搜索外,增加 DuckDuckGo 搜索选项DuckDuckGo 搜索无需配置 API Key在可访问国外服务环境下可直接使用。

Supported Model(模型支持)

The default LLM model in the project is changed to THUDM/chatglm2-6b, and the default Embedding model is changed to [moka-ai/m3e-base](https:// huggingface.co/moka-ai/m3e-base).

本项目中默认使用的 LLM 模型为 THUDM/chatglm2-6b,默认使用的 Embedding 模型为 moka-ai/m3e-base 为例。

Supported LLM models (LLM模型支持)

The project use FastChat to provide the API service of the open source LLM models, supported models include:

本项目最新版本中基于 FastChat 进行本地 LLM 模型接入,支持模型如下:

  • Any EleutherAI pythia model such as pythia-6.9b(任何 EleutherAI 的 pythia 模型,如 pythia-6.9b)
  • Any Peft adapter trained on top of a model above. To activate, must have peft in the model path. Note: If loading multiple peft models, you can have them share the base model weights by setting the environment variable PEFT_SHARE_BASE_WEIGHTS=true in any model worker.(在以上模型基础上训练的任何 Peft 适配器。为了激活,模型路径中必须有 peft 。注意如果加载多个peft模型你可以通过在任何模型工作器中设置环境变量 PEFT_SHARE_BASE_WEIGHTS=true 来使它们共享基础模型的权重。)

Please refer to llm_model_dict in configs.model_configs.py.example to invoke OpenAI API.

以上模型支持列表可能随 FastChat 更新而持续更新,可参考 FastChat 已支持模型列表

除本地模型外,本项目也支持直接接入 OpenAI API具体设置可参考 configs/model_configs.py.example 中的 llm_model_dictopenai-chatgpt-3.5 配置信息。

Supported Embedding models (Embedding模型支持)

Following models are tested by developers with Embedding class of HuggingFace:

本项目支持调用 HuggingFace 中的 Embedding 模型,已支持的 Embedding 模型如下:


Docker image (Docker 部署)

🐳 Docker image path: registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.0)

docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.0
  • The image size of this version is 33.9GB, using v0.2.0, with nvidia/cuda:12.1.1-cudnn8-devel-ubuntu22.04 as the base image
  • This version has a built-in embedding model: m3e-large, built-in chatglm2-6b-32k
  • This version is designed to facilitate one-click deployment. Please make sure you have installed the NVIDIA driver on your Linux distribution.
  • Please note that you do not need to install the CUDA toolkit on the host system, but you need to install the NVIDIA Driver and the NVIDIA Container Toolkit, please refer to the [Installation Guide](https://docs.nvidia.com/datacenter/cloud -native/container-toolkit/latest/install-guide.html)
  • It takes a certain amount of time to pull and start for the first time. When starting for the first time, please refer to the figure below to use docker logs -f <container id> to view the log.
  • If the startup process is stuck in the Waiting.. step, it is recommended to use docker exec -it <container id> bash to enter the /logs/ directory to view the corresponding stage logs
  • 该版本镜像大小 33.9GB,使用 v0.2.0,以 nvidia/cuda:12.1.1-cudnn8-devel-ubuntu22.04 为基础镜像
  • 该版本内置一个 embedding 模型:m3e-large,内置 chatglm2-6b-32k
  • 该版本目标为方便一键部署使用请确保您已经在Linux发行版上安装了NVIDIA驱动程序
  • 请注意您不需要在主机系统上安装CUDA工具包但需要安装 NVIDIA Driver 以及 NVIDIA Container Toolkit,请参考安装指南
  • 首次拉取和启动均需要一定时间,首次启动时请参照下图使用 docker logs -f <container id> 查看日志
  • 如遇到启动过程卡在 Waiting.. 步骤,建议使用 docker exec -it <container id> bash 进入 /logs/ 目录查看对应阶段日志

Deployment(开发部署)

Enviroment Preresiquisite(软件需求)

The project is tested under Python3.8-python 3.10, CUDA 11.0-CUDA11.7, Windows, macOS of ARM architecture, and Linux platform.

本项目已在 Python 3.8.1 - 3.10CUDA 11.7 环境下完成测试。已在 Windows、ARM 架构的 macOS、Linux 系统中完成测试。

1. Preparing Depolyment Enviroment(开发环境准备)

Please refer to install.md

参见 开发环境准备

请注意: 0.2.0 及更新版本的依赖包与 0.1.x 版本依赖包可能发生冲突,强烈建议新建环境后重新安装依赖包。

2. Downloading model to local disk(下载模型至本地)

For offline deployment only!

If you want to run this project in a local or offline environment, you need to first download the models required for the project to your local computer. Usually the open source LLM and Embedding models can be downloaded from HuggingFace.

Take the LLM model THUDM/chatglm2-6b and Embedding model [moka-ai/m3e-base](https://huggingface. co/moka-ai/m3e-base) for example:

To download the model, you need to install Git LFS, and then run:

$ git clone https://huggingface.co/THUDM/chatglm2-6b

$ git clone https://huggingface.co/moka-ai/m3e-base

如需在本地或离线环境下运行本项目,需要首先将项目所需的模型下载至本地,通常开源 LLM 与 Embedding 模型可以从 HuggingFace 下载。

以本项目中默认使用的 LLM 模型 THUDM/chatglm2-6b 与 Embedding 模型 moka-ai/m3e-base 为例:

下载模型需要先安装Git LFS,然后运行

$ git clone https://huggingface.co/THUDM/chatglm2-6b

$ git clone https://huggingface.co/moka-ai/m3e-base

3. Setting Configuration(设置配置项)

Copy the model-related parameter configuration template file configs/model_config.py.example and save it in the ./configs path under the project path, and rename it to model_config.py.

Copy the service-related parameter configuration template file configs/server_config.py.example to save in the ./configs path under the project path, and rename it to server_config.py.

Before starting to execute Web UI or command line interaction, please check whether each model parameter in configs/model_config.py and configs/server_config.py meets the requirements.

  • Please confirm that the path to local LLM model and embedding model have been written in llm_dict of configs/model_config.py, here is an example:
  • If you choose to use OpenAI's Embedding model, please write the model's key into embedding_model_dict. To use this model, you need to be able to access the OpenAI official API, or set up a proxy.
llm_model_dict={
                "chatglm2-6b": {
                        "local_model_path": "/Users/xxx/Downloads/chatglm2-6b",
                        "api_base_url": "http://localhost:8888/v1",  # "name"修改为 FastChat 服务中的"api_base_url"
                        "api_key": "EMPTY"
                    },
                }
embedding_model_dict = {
                        "m3e-base": "/Users/xxx/Downloads/m3e-base",
                       }

复制模型相关参数配置模板文件 configs/model_config.py.example 存储至项目路径下 ./configs 路径下,并重命名为 model_config.py

复制服务相关参数配置模板文件 configs/server_config.py.example 存储至项目路径下 ./configs 路径下,并重命名为 server_config.py

在开始执行 Web UI 或命令行交互前,请先检查 configs/model_config.pyconfigs/server_config.py 中的各项模型参数设计是否符合需求:

  • 请确认已下载至本地的 LLM 模型本地存储路径写在 llm_model_dict 对应模型的 local_model_path 属性中,如:
llm_model_dict={
                "chatglm2-6b": {
                        "local_model_path": "/Users/xxx/Downloads/chatglm2-6b",
                        "api_base_url": "http://localhost:8888/v1",  # "name"修改为 FastChat 服务中的"api_base_url"
                        "api_key": "EMPTY"
                    },
                }
  • 请确认已下载至本地的 Embedding 模型本地存储路径写在 embedding_model_dict 对应模型位置,如:
embedding_model_dict = {
                        "m3e-base": "/Users/xxx/Downloads/m3e-base",
                       }

如果你选择使用OpenAI的Embedding模型请将模型的 key写入 embedding_model_dict中。使用该模型你需要能够访问OpenAI官的API或设置代理。

4. Knowledge Base Migration(知识库初始化与迁移)

The knowledge base information is stored in the database, please initialize the database before running the project (we strongly recommend one back up the knowledge files before performing operations).

  • If you migrate from 0.1.x, for the established knowledge base, please confirm that the vector library type and Embedding model of the knowledge base are consistent with the default settings in configs/model_config.py, if there is no change, simply add the existing repository information to the database with the following command:

    $ python init_database.py
    
  • If you are a beginner of the project whose knowledge base has not been established, or the knowledge base type and embedding model in the configuration file have changed, or the previous vector library did not enable normalize_L2, you need the following command to initialize or rebuild the knowledge base:

    $ python init_database.py --recreate-vs
    

当前项目的知识库信息存储在数据库中,在正式运行项目之前请先初始化数据库(我们强烈建议您在执行操作前备份您的知识文件)。

  • 如果您是从 0.1.x 版本升级过来的用户针对已建立的知识库请确认知识库的向量库类型、Embedding 模型与 configs/model_config.py 中默认设置一致,如无变化只需以下命令将现有知识库信息添加到数据库即可:

    $ python init_database.py
    
  • 如果您是第一次运行本项目,知识库尚未建立,或者配置文件中的知识库类型、嵌入模型发生变化,或者之前的向量库没有开启 normalize_L2,需要以下命令初始化或重建知识库:

    $ python init_database.py --recreate-vs
    

5. Luanching API Service or WebUI with One Command(一键启动API 服务或 Web UI)

5.1 Command(启动命令)

The script is startuppy, you can luanch all fastchat related, API,WebUI service with is, here is an example:

$ python startup.py -a

optional args including: -a(or --all-webui), --all-api, --llm-api, -c(or --controller),--openai-api, -m(or --model-worker), --api, --webui, where:

  • --all-webui means to launch all related services of WEBUI
  • --all-api means to launch all related services of API
  • --llm-api means to launch all related services of FastChat
  • --openai-api means to launch controller and openai-api-server of FastChat only
  • model-worker means to launch model worker of FastChat only
  • any other optional arg is to launch one particular function only

一键启动脚本 startup.py,一键启动所有 Fastchat 服务、API 服务、WebUI 服务,示例代码:

$ python startup.py -a

并可使用 Ctrl + C 直接关闭所有运行服务。如果一次结束不了,可以多按几次。

可选参数包括 -a (或--all-webui), --all-api, --llm-api, -c (或--controller), --openai-api, -m (或--model-worker), --api, --webui,其中:

  • --all-webui 为一键启动 WebUI 所有依赖服务;
  • --all-api 为一键启动 API 所有依赖服务;
  • --llm-api 为一键启动 Fastchat 所有依赖的 LLM 服务;
  • --openai-api 为仅启动 FastChat 的 controller 和 openai-api-server 服务;
  • 其他为单独服务启动选项。

5.2 Launch none default model(启动非默认模型)

If you want to specify a none default model, use --model-name arg, here is a example:

若想指定非默认模型,需要用 --model-name 选项,示例:

$ python startup.py --all-webui --model-name Qwen-7B-Chat

更多信息可通过 python startup.py -h查看。

5.3 Load model with multi-gpus(多卡加载)

If you want to load model with multi-gpus, then the following three parameters in startup.create_model_worker_app should be changed:

gpus=None, 
num_gpus=1, 
max_gpu_memory="20GiB"

where:

  • gpus is about specifying the gpus' ID, such as '0,1';
  • num_gpus is about specifying the number of gpus to be used under gpus;
  • max_gpu_memory is about specifying the gpu memory of every gpu.

note:

  • These parameters now can be specified by server_config.FSCHST_MODEL_WORKERD.
  • In some extreme senses, gpus doesn't work, then one should specify the used gpus with environment variable CUDA_VISIBLE_DEVICES, here is an example:
CUDA_VISIBLE_DEVICES=0,1 python startup.py -a

项目支持多卡加载,需在 startup.py 中的 create_model_worker_app 函数中,修改如下三个参数:

gpus=None, 
num_gpus=1, 
max_gpu_memory="20GiB"

其中,gpus 控制使用的显卡的ID例如 "0,1";

num_gpus 控制使用的卡数;

max_gpu_memory 控制每个卡使用的显存容量。

注1server_config.py的FSCHAT_MODEL_WORKERS字典中也增加了相关配置如有需要也可通过修改FSCHAT_MODEL_WORKERS字典中对应参数实现多卡加载。

注2少数情况下gpus参数会不生效此时需要通过设置环境变量CUDA_VISIBLE_DEVICES来指定torch可见的gpu,示例代码:

CUDA_VISIBLE_DEVICES=0,1 python startup.py -a

5.4 Load PEFT(PEFT 加载)

Including lora,p-tuning,prefix tuning, prompt tuning,ia3

This project loads the LLM service based on FastChat, so one must load the PEFT in a FastChat way, that is, ensure that the word peft must be in the path name, the name of the configuration file must be adapter_config.json, and the path contains PEFT weights in .bin format. The peft path is specified in args.model_names of the create_model_worker_app function in startup.py, and enable the environment variable PEFT_SHARE_BASE_WEIGHTS=true parameter.

If the above method fails, you need to start standard fastchat service step by step. Step-by-step procedure could be found Section 6. For further steps, please refer to [Model invalid after loading lora fine-tuning](https://github. com/chatchat-space/Langchain-Chatchat/issues/1130#issuecomment-1685291822).

本项目基于 FastChat 加载 LLM 服务,故需以 FastChat 加载 PEFT 路径,即保证路径名称里必须有 peft 这个词,配置文件的名字为 adapter_config.jsonpeft 路径下包含.bin 格式的 PEFT 权重peft路径在startup.py中create_model_worker_app函数的args.model_names中指定并开启环境变量PEFT_SHARE_BASE_WEIGHTS=true参数。

如果上述方式启动失败则需要以标准的fastchat服务启动方式分步启动分步启动步骤参考第六节PEFT加载详细步骤参考加载lora微调后模型失效.

5.5 Some Notes(注意事项)

  1. The startup.py uses multi-process mode to start the services of each module, which may cause printing order problems. Please wait for all services to be initiated before calling, and call the service according to the default or specified port (default LLM API service port: 127.0.0.1:8888 , default API service port:127.0.0.1:7861 , default WebUI service port: 127.0.0.1: 8501)
  2. The startup time of the service differs across devices, usually it takes 3-10 minutes. If it does not start for a long time, please go to the ./logs directory to monitor the logs and locate the problem.
  3. Using ctrl+C to exit on Linux may cause orphan processes due to the multi-process mechanism of Linux. You can exit through shutdown_all.sh

1. startup 脚本用多进程方式启动各模块的服务,可能会导致打印顺序问题,请等待全部服务发起后再调用,并根据默认或指定端口调用服务(默认 LLM API 服务端口:127.0.0.1:8888,默认 API 服务端口:127.0.0.1:7861,默认 WebUI 服务端口:127.0.0.18501)

2.服务启动时间示设备不同而不同,约 3-10 分钟,如长时间没有启动请前往 ./logs目录下监控日志,定位问题。

3. 在Linux上使用ctrl+C退出可能会由于linux的多进程机制导致multiprocessing遗留孤儿进程可通过shutdown_all.sh进行退出

5.6 Interface Examples(启动界面示例)

The API, chat interface of WebUI, and knowledge management interface of WebUI are list below respectively.

  1. FastAPI docs 界面

  1. webui启动界面示例
  • Web UI 对话界面: img
  • Web UI 知识库管理页面:

6 Luanching API Service or WebUI step-by-step(分步启动 API 服务或 Web UI)

The developers will depreciate step-by-step procudure in the future one or two version, feel free to ignore this part.

注意:如使用了一键启动方式,可忽略本节。

6.1 启动 LLM 服务

如需使用开源模型进行本地部署,需首先启动 LLM 服务,启动方式分为三种:

三种方式只需选择一个即可,具体操作方式详见 5.1.1 - 5.1.3。

如果启动在线的API服务如 OPENAI 的 API 接口),则无需启动 LLM 服务,即 5.1 小节的任何命令均无需启动。

6.1.1 基于多进程脚本 llm_api.py 启动 LLM 服务

在项目根目录下,执行 server/llm_api.py 脚本启动 LLM 模型服务:

$ python server/llm_api.py

项目支持多卡加载,需在 llm_api.py 中的 create_model_worker_app 函数中,修改如下三个参数:

gpus=None, 
num_gpus=1, 
max_gpu_memory="20GiB"

其中,gpus 控制使用的显卡的ID如果 "0,1";

num_gpus 控制使用的卡数;

max_gpu_memory 控制每个卡使用的显存容量。

6.1.2 基于命令行脚本 llm_api_stale.py 启动 LLM 服务

⚠️ 注意:

1.llm_api_stale.py脚本原生仅适用于linux,mac设备需要安装对应的linux命令,win平台请使用wsl;

2.加载非默认模型需要用命令行参数--model-path-address指定模型不会读取model_config.py配置;

在项目根目录下,执行 server/llm_api_stale.py 脚本启动 LLM 模型服务:

$ python server/llm_api_stale.py

该方式支持启动多个worker示例启动方式

$ python server/llm_api_stale.py --model-path-address model1@host1@port1 model2@host2@port2

如果出现server端口占用情况需手动指定server端口,并同步修改model_config.py下对应模型的base_api_url为指定端口:

$ python server/llm_api_stale.py --server-port 8887

如果要启动多卡加载,示例命令如下:

$ python server/llm_api_stale.py --gpus 0,1 --num-gpus 2 --max-gpu-memory 10GiB

以如上方式启动LLM服务会以nohup命令在后台运行 FastChat 服务,如需停止服务,可以运行如下命令:

$ python server/llm_api_shutdown.py --serve all 

亦可单独停止一个 FastChat 服务模块,可选 [all, controller, model_worker, openai_api_server]

6.1.3 PEFT 加载(包括lora,p-tuning,prefix tuning, prompt tuning,ia3等)

本项目基于 FastChat 加载 LLM 服务,故需以 FastChat 加载 PEFT 路径,即保证路径名称里必须有 peft 这个词,配置文件的名字为 adapter_config.jsonpeft 路径下包含 model.bin 格式的 PEFT 权重。 详细步骤参考加载lora微调后模型失效

image

6.2 启动 API 服务

本地部署情况下,按照 5.1 节启动 LLM 服务后,再执行 server/api.py 脚本启动 API 服务;

在线调用API服务的情况下直接执执行 server/api.py 脚本启动 API 服务;

调用命令示例:

$ python server/api.py

启动 API 服务后,可访问 localhost:7861{API 所在服务器 IP}:7861 FastAPI 自动生成的 docs 进行接口查看与测试。

  • FastAPI docs 界面

6.3 启动 Web UI 服务

按照 5.2 节启动 API 服务后,执行 webui.py 启动 Web UI 服务(默认使用端口 8501

$ streamlit run webui.py

使用 Langchain-Chatchat 主题色启动 Web UI 服务(默认使用端口 8501

$ streamlit run webui.py --theme.base "light" --theme.primaryColor "#165dff" --theme.secondaryBackgroundColor "#f5f5f5" --theme.textColor "#000000"

或使用以下命令指定启动 Web UI 服务并指定端口号

$ streamlit run webui.py --server.port 666
  • Web UI 对话界面:

  • Web UI 知识库管理页面:


FAQ(常见问题)

Please refer to FAQ

参见 常见问题


Roadmap(路线图)

  • Langchain applications

    • Load local documents
      • Unstructed documents
        • .md
        • .txt
        • .docx
      • Structed documents
        • .csv
        • .xlsx
      • TextSplliter and Retriever
        • multipy TextSplitter
        • ChineseTextSplitter
        • Recontructed Context Retriever
      • Webpage
      • SQL
      • Knowledge Database
    • Search Engines
      • Bing
      • DuckDuckGo
    • Agent
  • LLM Models

    • FastChat -based LLM Models
    • Mutiply Remote LLM API
  • Embedding Models

    • HuggingFace -based Embedding models
    • Mutiply Remote Embedding API
  • 基于 FastAPI -based API

  • Web UI

    • Streamlit -based Web UI
  • Langchain 应用

    • 本地数据接入
      • 接入非结构化文档
        • .md
        • .txt
        • .docx
      • 结构化数据接入
        • .csv
        • .xlsx
      • 分词及召回
        • 接入不同类型 TextSplitter
        • 优化依据中文标点符号设计的 ChineseTextSplitter
        • 重新实现上下文拼接召回
      • 本地网页接入
      • SQL 接入
      • 知识图谱/图数据库接入
    • 搜索引擎接入
      • Bing 搜索
      • DuckDuckGo 搜索
    • Agent 实现
  • LLM 模型接入

    • 支持通过调用 FastChat api 调用 llm
    • 支持 ChatGLM API 等 LLM API 的接入
  • Embedding 模型接入

    • 支持调用 HuggingFace 中各开源 Emebdding 模型
    • 支持 OpenAI Embedding API 等 Embedding API 的接入
  • 基于 FastAPI 的 API 方式调用

  • Web UI

    • 基于 Streamlit 的 Web UI

WeChat Group QR Code(项目交流群)

二维码

🎉 langchain-ChatGLM 项目微信交流群,如果你也对本项目感兴趣,欢迎加入群聊参与讨论交流。