Langchain-Chatchat/tests/custom_splitter/text_different_splitter.py

90 lines
3.7 KiB
Python

import os
from transformers import AutoTokenizer
import sys
sys.path.append("../..")
from configs.model_config import (
CHUNK_SIZE,
OVERLAP_SIZE,
text_splitter_dict, llm_model_dict, LLM_MODEL, TEXT_SPLITTER_NAME
)
import langchain.document_loaders
import importlib
def text_different_splitter(splitter_name, chunk_size: int = CHUNK_SIZE,
chunk_overlap: int = OVERLAP_SIZE, ):
if splitter_name == "MarkdownHeaderTextSplitter": # MarkdownHeaderTextSplitter特殊判定
headers_to_split_on = text_splitter_dict[splitter_name]['headers_to_split_on']
text_splitter = langchain.text_splitter.MarkdownHeaderTextSplitter(
headers_to_split_on=headers_to_split_on)
else:
try: ## 优先使用用户自定义的text_splitter
text_splitter_module = importlib.import_module('text_splitter')
TextSplitter = getattr(text_splitter_module, splitter_name)
except: ## 否则使用langchain的text_splitter
text_splitter_module = importlib.import_module('langchain.text_splitter')
TextSplitter = getattr(text_splitter_module, splitter_name)
if text_splitter_dict[splitter_name]["source"] == "tiktoken":
try:
text_splitter = TextSplitter.from_tiktoken_encoder(
encoding_name=text_splitter_dict[splitter_name]["tokenizer_name_or_path"],
pipeline="zh_core_web_sm",
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
except:
text_splitter = TextSplitter.from_tiktoken_encoder(
encoding_name=text_splitter_dict[splitter_name]["tokenizer_name_or_path"],
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
elif text_splitter_dict[splitter_name]["source"] == "huggingface":
if text_splitter_dict[splitter_name]["tokenizer_name_or_path"] == "":
text_splitter_dict[splitter_name]["tokenizer_name_or_path"] = \
llm_model_dict[LLM_MODEL]["local_model_path"]
if text_splitter_dict[splitter_name]["tokenizer_name_or_path"] == "gpt2":
from transformers import GPT2TokenizerFast
from langchain.text_splitter import CharacterTextSplitter
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2") ## 这里选择你用的tokenizer
else:
tokenizer = AutoTokenizer.from_pretrained(
text_splitter_dict[splitter_name]["tokenizer_name_or_path"],
trust_remote_code=True)
text_splitter = TextSplitter.from_huggingface_tokenizer(
tokenizer=tokenizer,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
return text_splitter
if __name__ == "__main__":
from langchain import document_loaders
# 使用DocumentLoader读取文件
filepath = "../../knowledge_base/samples/content/test.txt"
loader = document_loaders.UnstructuredFileLoader(filepath, autodetect_encoding=True)
docs = loader.load()
text_splitter = text_different_splitter(TEXT_SPLITTER_NAME, CHUNK_SIZE, OVERLAP_SIZE)
# 使用text_splitter进行分词
if TEXT_SPLITTER_NAME == "MarkdownHeaderTextSplitter":
split_docs = text_splitter.split_text(docs[0].page_content)
for doc in docs:
# 如果文档有元数据
if doc.metadata:
doc.metadata["source"] = os.path.basename(filepath)
else:
split_docs = text_splitter.split_documents(docs)
# 打印分词结果
for doc in split_docs:
print(doc)