203 lines
8.0 KiB
Plaintext
203 lines
8.0 KiB
Plaintext
import os
|
||
import logging
|
||
# 日志格式
|
||
LOG_FORMAT = "%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s"
|
||
logger = logging.getLogger()
|
||
logger.setLevel(logging.INFO)
|
||
logging.basicConfig(format=LOG_FORMAT)
|
||
# 是否显示详细日志
|
||
log_verbose = False
|
||
|
||
|
||
# 在以下字典中修改属性值,以指定本地embedding模型存储位置
|
||
# 如将 "text2vec": "GanymedeNil/text2vec-large-chinese" 修改为 "text2vec": "User/Downloads/text2vec-large-chinese"
|
||
# 此处请写绝对路径
|
||
embedding_model_dict = {
|
||
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
|
||
"ernie-base": "nghuyong/ernie-3.0-base-zh",
|
||
"text2vec-base": "shibing624/text2vec-base-chinese",
|
||
"text2vec": "GanymedeNil/text2vec-large-chinese",
|
||
"text2vec-paraphrase": "shibing624/text2vec-base-chinese-paraphrase",
|
||
"text2vec-sentence": "shibing624/text2vec-base-chinese-sentence",
|
||
"text2vec-multilingual": "shibing624/text2vec-base-multilingual",
|
||
"text2vec-bge-large-chinese": "shibing624/text2vec-bge-large-chinese",
|
||
"m3e-small": "moka-ai/m3e-small",
|
||
"m3e-base": "moka-ai/m3e-base",
|
||
"m3e-large": "moka-ai/m3e-large",
|
||
"bge-small-zh": "BAAI/bge-small-zh",
|
||
"bge-base-zh": "BAAI/bge-base-zh",
|
||
"bge-large-zh": "BAAI/bge-large-zh",
|
||
"bge-large-zh-noinstruct": "BAAI/bge-large-zh-noinstruct",
|
||
"piccolo-base-zh": "sensenova/piccolo-base-zh",
|
||
"piccolo-large-zh": "sensenova/piccolo-large-zh",
|
||
"text-embedding-ada-002": os.environ.get("OPENAI_API_KEY")
|
||
}
|
||
|
||
# 选用的 Embedding 名称
|
||
EMBEDDING_MODEL = "m3e-base"
|
||
|
||
# Embedding 模型运行设备。设为"auto"会自动检测,也可手动设定为"cuda","mps","cpu"其中之一。
|
||
EMBEDDING_DEVICE = "auto"
|
||
|
||
llm_model_dict = {
|
||
"chatglm-6b": {
|
||
"local_model_path": "THUDM/chatglm-6b",
|
||
"api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url"
|
||
"api_key": "EMPTY"
|
||
},
|
||
|
||
"chatglm2-6b": {
|
||
"local_model_path": "THUDM/chatglm2-6b",
|
||
"api_base_url": "http://localhost:8888/v1", # URL需要与运行fastchat服务端的server_config.FSCHAT_OPENAI_API一致
|
||
"api_key": "EMPTY"
|
||
},
|
||
|
||
"chatglm2-6b-32k": {
|
||
"local_model_path": "THUDM/chatglm2-6b-32k", # "THUDM/chatglm2-6b-32k",
|
||
"api_base_url": "http://localhost:8888/v1", # "URL需要与运行fastchat服务端的server_config.FSCHAT_OPENAI_API一致
|
||
"api_key": "EMPTY"
|
||
},
|
||
|
||
# 调用chatgpt时如果报出: urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='api.openai.com', port=443):
|
||
# Max retries exceeded with url: /v1/chat/completions
|
||
# 则需要将urllib3版本修改为1.25.11
|
||
# 如果依然报urllib3.exceptions.MaxRetryError: HTTPSConnectionPool,则将https改为http
|
||
# 参考https://zhuanlan.zhihu.com/p/350015032
|
||
|
||
# 如果报出:raise NewConnectionError(
|
||
# urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPSConnection object at 0x000001FE4BDB85E0>:
|
||
# Failed to establish a new connection: [WinError 10060]
|
||
# 则是因为内地和香港的IP都被OPENAI封了,需要切换为日本、新加坡等地
|
||
|
||
# 如果出现WARNING: Retrying langchain.chat_models.openai.acompletion_with_retry.<locals>._completion_with_retry in
|
||
# 4.0 seconds as it raised APIConnectionError: Error communicating with OpenAI.
|
||
# 需要添加代理访问(正常开的代理软件可能会拦截不上)需要设置配置openai_proxy 或者 使用环境遍历OPENAI_PROXY 进行设置
|
||
# 比如: "openai_proxy": 'http://127.0.0.1:4780'
|
||
"gpt-3.5-turbo": {
|
||
"api_base_url": "https://api.openai.com/v1",
|
||
"api_key": os.environ.get("OPENAI_API_KEY"),
|
||
"openai_proxy": os.environ.get("OPENAI_PROXY")
|
||
},
|
||
# 线上模型。当前支持智谱AI。
|
||
# 如果没有设置有效的local_model_path,则认为是在线模型API。
|
||
# 请在server_config中为每个在线API设置不同的端口
|
||
# 具体注册及api key获取请前往 http://open.bigmodel.cn
|
||
"chatglm-api": {
|
||
"api_base_url": "http://127.0.0.1:8888/v1",
|
||
"api_key": os.environ.get("ZHIPUAI_API_KEY"),
|
||
"provider": "ChatGLMWorker",
|
||
"version": "chatglm_pro", # 可选包括 "chatglm_lite", "chatglm_std", "chatglm_pro"
|
||
},
|
||
"minimax-api": {
|
||
"api_base_url": "http://127.0.0.1:8888/v1",
|
||
"group_id": "",
|
||
"api_key": "",
|
||
"is_pro": False,
|
||
"provider": "MiniMaxWorker",
|
||
},
|
||
"xinghuo-api": {
|
||
"api_base_url": "http://127.0.0.1:8888/v1",
|
||
"APPID": "",
|
||
"APISecret": "",
|
||
"api_key": "",
|
||
"is_v2": False,
|
||
"provider": "XingHuoWorker",
|
||
}
|
||
}
|
||
|
||
# LLM 名称
|
||
LLM_MODEL = "chatglm2-6b"
|
||
|
||
# 历史对话轮数
|
||
HISTORY_LEN = 3
|
||
|
||
# LLM通用对话参数
|
||
TEMPERATURE = 0.7
|
||
# TOP_P = 0.95 # ChatOpenAI暂不支持该参数
|
||
|
||
# LLM 运行设备。设为"auto"会自动检测,也可手动设定为"cuda","mps","cpu"其中之一。
|
||
LLM_DEVICE = "auto"
|
||
|
||
# 日志存储路径
|
||
LOG_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "logs")
|
||
if not os.path.exists(LOG_PATH):
|
||
os.mkdir(LOG_PATH)
|
||
|
||
# 知识库默认存储路径
|
||
KB_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "knowledge_base")
|
||
if not os.path.exists(KB_ROOT_PATH):
|
||
os.mkdir(KB_ROOT_PATH)
|
||
# 数据库默认存储路径。
|
||
# 如果使用sqlite,可以直接修改DB_ROOT_PATH;如果使用其它数据库,请直接修改SQLALCHEMY_DATABASE_URI。
|
||
DB_ROOT_PATH = os.path.join(KB_ROOT_PATH, "info.db")
|
||
SQLALCHEMY_DATABASE_URI = f"sqlite:///{DB_ROOT_PATH}"
|
||
|
||
# 可选向量库类型及对应配置
|
||
kbs_config = {
|
||
"faiss": {
|
||
},
|
||
"milvus": {
|
||
"host": "127.0.0.1",
|
||
"port": "19530",
|
||
"user": "",
|
||
"password": "",
|
||
"secure": False,
|
||
},
|
||
"pg": {
|
||
"connection_uri": "postgresql://postgres:postgres@127.0.0.1:5432/langchain_chatchat",
|
||
}
|
||
}
|
||
|
||
# 默认向量库类型。可选:faiss, milvus, pg.
|
||
DEFAULT_VS_TYPE = "faiss"
|
||
|
||
# 缓存向量库数量
|
||
CACHED_VS_NUM = 1
|
||
|
||
# 知识库中单段文本长度
|
||
CHUNK_SIZE = 250
|
||
|
||
# 知识库中相邻文本重合长度
|
||
OVERLAP_SIZE = 50
|
||
|
||
# 知识库匹配向量数量
|
||
VECTOR_SEARCH_TOP_K = 5
|
||
|
||
# 知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右
|
||
SCORE_THRESHOLD = 1
|
||
|
||
# 搜索引擎匹配结题数量
|
||
SEARCH_ENGINE_TOP_K = 5
|
||
|
||
# nltk 模型存储路径
|
||
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")
|
||
|
||
# 基于本地知识问答的提示词模版(使用Jinja2语法,简单点就是用双大括号代替f-string的单大括号
|
||
PROMPT_TEMPLATE = """<指令>根据已知信息,简洁和专业的来回答问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题”,不允许在答案中添加编造成分,答案请使用中文。 </指令>
|
||
|
||
<已知信息>{{ context }}</已知信息>
|
||
|
||
<问题>{{ question }}</问题>"""
|
||
|
||
# API 是否开启跨域,默认为False,如果需要开启,请设置为True
|
||
# is open cross domain
|
||
OPEN_CROSS_DOMAIN = False
|
||
|
||
# Bing 搜索必备变量
|
||
# 使用 Bing 搜索需要使用 Bing Subscription Key,需要在azure port中申请试用bing search
|
||
# 具体申请方式请见
|
||
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/create-bing-search-service-resource
|
||
# 使用python创建bing api 搜索实例详见:
|
||
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/quickstarts/rest/python
|
||
BING_SEARCH_URL = "https://api.bing.microsoft.com/v7.0/search"
|
||
# 注意不是bing Webmaster Tools的api key,
|
||
|
||
# 此外,如果是在服务器上,报Failed to establish a new connection: [Errno 110] Connection timed out
|
||
# 是因为服务器加了防火墙,需要联系管理员加白名单,如果公司的服务器的话,就别想了GG
|
||
BING_SUBSCRIPTION_KEY = ""
|
||
|
||
# 是否开启中文标题加强,以及标题增强的相关配置
|
||
# 通过增加标题判断,判断哪些文本为标题,并在metadata中进行标记;
|
||
# 然后将文本与往上一级的标题进行拼合,实现文本信息的增强。
|
||
ZH_TITLE_ENHANCE = False
|