331 lines
14 KiB
Python
331 lines
14 KiB
Python
from typing import List
|
||
import os
|
||
import shutil
|
||
from langchain.embeddings.base import Embeddings
|
||
from langchain.schema import Document
|
||
from langchain.vectorstores.elasticsearch import ElasticsearchStore
|
||
from configs import KB_ROOT_PATH, EMBEDDING_MODEL, EMBEDDING_DEVICE, CACHED_VS_NUM
|
||
from server.knowledge_base.kb_service.base import KBService, SupportedVSType
|
||
from server.knowledge_base.utils import KnowledgeFile
|
||
from server.utils import load_local_embeddings
|
||
from elasticsearch import Elasticsearch,BadRequestError
|
||
from configs import logger
|
||
from configs import kbs_config
|
||
from server.knowledge_base.model.kb_document_model import DocumentWithVSId
|
||
|
||
class ESKBService(KBService):
|
||
|
||
def do_init(self):
|
||
self.kb_path = self.get_kb_path(self.kb_name)
|
||
self.index_name = os.path.split(self.kb_path)[-1]
|
||
self.IP = kbs_config[self.vs_type()]['host']
|
||
self.PORT = kbs_config[self.vs_type()]['port']
|
||
self.user = kbs_config[self.vs_type()].get("user",'')
|
||
self.password = kbs_config[self.vs_type()].get("password",'')
|
||
self.dims_length = kbs_config[self.vs_type()].get("dims_length",None)
|
||
self.embeddings_model = load_local_embeddings(self.embed_model, EMBEDDING_DEVICE)
|
||
try:
|
||
# ES python客户端连接(仅连接)
|
||
if self.user != "" and self.password != "":
|
||
self.es_client_python = Elasticsearch(f"http://{self.IP}:{self.PORT}",
|
||
basic_auth=(self.user,self.password))
|
||
else:
|
||
logger.warning("ES未配置用户名和密码")
|
||
self.es_client_python = Elasticsearch(f"http://{self.IP}:{self.PORT}")
|
||
except ConnectionError:
|
||
logger.error("连接到 Elasticsearch 失败!")
|
||
raise ConnectionError
|
||
except Exception as e:
|
||
logger.error(f"Error 发生 : {e}")
|
||
raise e
|
||
try:
|
||
# 首先尝试通过es_client_python创建
|
||
mappings = {
|
||
"properties": {
|
||
"dense_vector": {
|
||
"type": "dense_vector",
|
||
"dims": self.dims_length,
|
||
"index": True
|
||
}
|
||
}
|
||
}
|
||
self.es_client_python.indices.create(index=self.index_name, mappings=mappings)
|
||
except BadRequestError as e:
|
||
logger.error("创建索引失败,重新")
|
||
logger.error(e)
|
||
|
||
try:
|
||
# langchain ES 连接、创建索引
|
||
if self.user != "" and self.password != "":
|
||
self.db_init = ElasticsearchStore(
|
||
es_url=f"http://{self.IP}:{self.PORT}",
|
||
index_name=self.index_name,
|
||
query_field="context",
|
||
vector_query_field="dense_vector",
|
||
embedding=self.embeddings_model,
|
||
es_user=self.user,
|
||
es_password=self.password
|
||
)
|
||
else:
|
||
logger.warning("ES未配置用户名和密码")
|
||
self.db_init = ElasticsearchStore(
|
||
es_url=f"http://{self.IP}:{self.PORT}",
|
||
index_name=self.index_name,
|
||
query_field="context",
|
||
vector_query_field="dense_vector",
|
||
embedding=self.embeddings_model,
|
||
)
|
||
except ConnectionError:
|
||
print("### 初始化 Elasticsearch 失败!")
|
||
logger.error("### 初始化 Elasticsearch 失败!")
|
||
raise ConnectionError
|
||
except Exception as e:
|
||
logger.error(f"Error 发生 : {e}")
|
||
raise e
|
||
try:
|
||
# 尝试通过db_init创建索引
|
||
self.db_init._create_index_if_not_exists(
|
||
index_name=self.index_name,
|
||
dims_length=self.dims_length
|
||
)
|
||
except Exception as e:
|
||
logger.error("创建索引失败...")
|
||
logger.error(e)
|
||
# raise e
|
||
|
||
|
||
|
||
@staticmethod
|
||
def get_kb_path(knowledge_base_name: str):
|
||
return os.path.join(KB_ROOT_PATH, knowledge_base_name)
|
||
|
||
@staticmethod
|
||
def get_vs_path(knowledge_base_name: str):
|
||
return os.path.join(ESKBService.get_kb_path(knowledge_base_name), "vector_store")
|
||
|
||
def do_create_kb(self):
|
||
if os.path.exists(self.doc_path):
|
||
if not os.path.exists(os.path.join(self.kb_path, "vector_store")):
|
||
os.makedirs(os.path.join(self.kb_path, "vector_store"))
|
||
else:
|
||
logger.warning("directory `vector_store` already exists.")
|
||
|
||
def vs_type(self) -> str:
|
||
return SupportedVSType.ES
|
||
|
||
def _load_es(self, docs, embed_model):
|
||
# 将docs写入到ES中
|
||
try:
|
||
# 连接 + 同时写入文档
|
||
#使用self.db_init,modified by weiweiwang
|
||
if self.user != "" and self.password != "":
|
||
# self.db_init.from_documents(
|
||
# documents=docs,
|
||
# embedding=embed_model,
|
||
# es_url= f"http://{self.IP}:{self.PORT}",
|
||
# index_name=self.index_name,
|
||
# distance_strategy="COSINE",
|
||
# query_field="context",
|
||
# vector_query_field="dense_vector",
|
||
# verify_certs=False,
|
||
# es_user=self.user,
|
||
# es_password=self.password
|
||
# )
|
||
self.db = ElasticsearchStore.from_documents(
|
||
documents=docs,
|
||
embedding=embed_model,
|
||
es_url= f"http://{self.IP}:{self.PORT}",
|
||
index_name=self.index_name,
|
||
distance_strategy="COSINE",
|
||
query_field="context",
|
||
vector_query_field="dense_vector",
|
||
verify_certs=False,
|
||
es_user=self.user,
|
||
es_password=self.password
|
||
)
|
||
else:
|
||
self.db = ElasticsearchStore.from_documents(
|
||
documents=docs,
|
||
embedding=embed_model,
|
||
es_url= f"http://{self.IP}:{self.PORT}",
|
||
index_name=self.index_name,
|
||
distance_strategy="COSINE",
|
||
query_field="context",
|
||
vector_query_field="dense_vector",
|
||
verify_certs=False)
|
||
except ConnectionError as ce:
|
||
print(ce)
|
||
print("连接到 Elasticsearch 失败!")
|
||
logger.error("连接到 Elasticsearch 失败!")
|
||
except Exception as e:
|
||
logger.error(f"Error 发生 : {e}")
|
||
print(e)
|
||
|
||
|
||
|
||
def do_search(self, query:str, top_k: int, score_threshold: float):
|
||
# 文本相似性检索
|
||
docs = self.db_init.similarity_search_with_score(query=query,
|
||
k=top_k)
|
||
return docs
|
||
|
||
def searchbyContent(self, query:str, top_k: int = 2):
|
||
if self.es_client_python.indices.exists(index=self.index_name):
|
||
logger.info(f"******ESKBService searchByContent {self.index_name},query:{query}")
|
||
tem_query = {
|
||
"query": {"match": {
|
||
"context": "*" + query + "*"
|
||
}},
|
||
"highlight":{"fields":{
|
||
"context":{}
|
||
}}
|
||
}
|
||
search_results = self.es_client_python.search(index=self.index_name, body=tem_query, size=top_k)
|
||
hits = [hit for hit in search_results["hits"]["hits"]]
|
||
|
||
docs_and_scores = []
|
||
for hit in hits:
|
||
highlighted_contexts = ""
|
||
if 'highlight' in hit:
|
||
highlighted_contexts = " ".join(hit['highlight']['context'])
|
||
#print(f"******searchByContent highlighted_contexts:{highlighted_contexts}")
|
||
docs_and_scores.append(DocumentWithVSId(
|
||
page_content=highlighted_contexts,
|
||
metadata=hit["_source"]["metadata"],
|
||
id = hit["_id"],
|
||
))
|
||
return docs_and_scores
|
||
|
||
def searchbyContentInternal(self, query:str, top_k: int = 2):
|
||
if self.es_client_python.indices.exists(index=self.index_name):
|
||
logger.info(f"******ESKBService searchbyContentInternal {self.index_name},query:{query}")
|
||
tem_query = {
|
||
"query": {"match": {
|
||
"context": "*" + query + "*"
|
||
}}
|
||
}
|
||
search_results = self.es_client_python.search(index=self.index_name, body=tem_query, size=top_k)
|
||
hits = [hit for hit in search_results["hits"]["hits"]]
|
||
docs_and_scores = [
|
||
(
|
||
Document(
|
||
page_content=hit["_source"]["context"],
|
||
metadata=hit["_source"]["metadata"],
|
||
),
|
||
1.3,
|
||
)
|
||
for hit in hits
|
||
]
|
||
return docs_and_scores
|
||
|
||
def get_doc_by_ids(self, ids: List[str]) -> List[Document]:
|
||
result_list = []
|
||
for doc_id in ids:
|
||
try:
|
||
result = self.es_client_python.get(index=self.index_name,
|
||
id=doc_id)
|
||
#print(f"es_kb_service:result:{result}")
|
||
result_list.append(Document(
|
||
page_content=result["_source"]["context"],
|
||
metadata=result["_source"]["metadata"],
|
||
))
|
||
except Exception as e:
|
||
logger.error(f"ES Docs Get Error! {e}")
|
||
return result_list
|
||
|
||
|
||
def del_doc_by_ids(self,ids: List[str]) -> bool:
|
||
logger.info(f"es_kb_service del_doc_by_ids")
|
||
for doc_id in ids:
|
||
try:
|
||
self.es_client_python.delete(index=self.index_name,
|
||
id=doc_id,
|
||
refresh=True)
|
||
except Exception as e:
|
||
logger.error(f"ES Docs Delete Error! {e}")
|
||
|
||
|
||
def do_delete_doc(self, kb_file, **kwargs):
|
||
base_file_name = os.path.basename(kb_file.filepath)
|
||
if self.es_client_python.indices.exists(index=self.index_name):
|
||
# 从向量数据库中删除索引(文档名称是Keyword)
|
||
query = {
|
||
"query": {
|
||
"term": {
|
||
"metadata.source.keyword": base_file_name
|
||
}
|
||
}
|
||
}
|
||
print(f"***do_delete_doc: kb_file.filepath:{kb_file.filepath}, base_file_name:{base_file_name}")
|
||
# 注意设置size,默认返回10个。
|
||
search_results = self.es_client_python.search(index=self.index_name, body=query,size=200)
|
||
delete_list = [hit["_id"] for hit in search_results['hits']['hits']]
|
||
size = len(delete_list)
|
||
#print(f"***do_delete_doc: 删除的size:{size}, {delete_list}")
|
||
if len(delete_list) == 0:
|
||
return None
|
||
else:
|
||
for doc_id in delete_list:
|
||
try:
|
||
self.es_client_python.delete(index=self.index_name,
|
||
id=doc_id,
|
||
refresh=True)
|
||
except Exception as e:
|
||
logger.error(f"ES Docs Delete Error! {e}")
|
||
|
||
# self.db_init.delete(ids=delete_list)
|
||
#self.es_client_python.indices.refresh(index=self.index_name)
|
||
|
||
|
||
def do_add_doc(self, docs: List[Document], **kwargs):
|
||
'''向知识库添加文件'''
|
||
print(f"server.knowledge_base.kb_service.es_kb_service.do_add_doc 输入的docs参数长度为:{len(docs)}")
|
||
print("*"*100)
|
||
self._load_es(docs=docs, embed_model=self.embeddings_model)
|
||
# 获取 id 和 source , 格式:[{"id": str, "metadata": dict}, ...]
|
||
print("写入数据成功.")
|
||
print("*"*100)
|
||
|
||
if self.es_client_python.indices.exists(index=self.index_name):
|
||
file_path = docs[0].metadata.get("source")
|
||
query = {
|
||
"query": {
|
||
"term": {
|
||
"metadata.source.keyword": file_path
|
||
}
|
||
}
|
||
}
|
||
search_results = self.es_client_python.search(index=self.index_name, body=query,size=200)
|
||
if len(search_results["hits"]["hits"]) == 0:
|
||
raise ValueError("召回元素个数为0")
|
||
info_docs = [{"id":hit["_id"], "metadata": hit["_source"]["metadata"]} for hit in search_results["hits"]["hits"]]
|
||
#size = len(info_docs)
|
||
#print(f"do_add_doc 召回元素个数:{size}")
|
||
return info_docs
|
||
|
||
|
||
def do_clear_vs(self):
|
||
"""从知识库删除全部向量"""
|
||
if self.es_client_python.indices.exists(index=self.kb_name):
|
||
self.es_client_python.indices.delete(index=self.kb_name)
|
||
|
||
|
||
def do_drop_kb(self):
|
||
"""删除知识库"""
|
||
# self.kb_file: 知识库路径
|
||
if os.path.exists(self.kb_path):
|
||
shutil.rmtree(self.kb_path)
|
||
|
||
|
||
if __name__ == '__main__':
|
||
esKBService = ESKBService("test")
|
||
#esKBService.clear_vs()
|
||
#esKBService.create_kb()
|
||
esKBService.add_doc(KnowledgeFile(filename="README.md", knowledge_base_name="test"))
|
||
print(esKBService.search_docs("如何启动api服务"))
|
||
|
||
|
||
|
||
|
||
|