97 lines
4.0 KiB
Python
97 lines
4.0 KiB
Python
import json
|
|
from typing import List, Dict, Optional
|
|
|
|
from langchain.schema import Document
|
|
from langchain.vectorstores.pgvector import PGVector, DistanceStrategy
|
|
from sqlalchemy import text
|
|
|
|
from configs import kbs_config
|
|
|
|
from server.knowledge_base.kb_service.base import SupportedVSType, KBService, EmbeddingsFunAdapter, \
|
|
score_threshold_process
|
|
from server.knowledge_base.utils import KnowledgeFile
|
|
import shutil
|
|
import sqlalchemy
|
|
from sqlalchemy.engine.base import Engine
|
|
from sqlalchemy.orm import Session
|
|
|
|
|
|
class PGKBService(KBService):
|
|
engine: Engine = sqlalchemy.create_engine(kbs_config.get("pg").get("connection_uri"), pool_size=10)
|
|
|
|
def _load_pg_vector(self):
|
|
self.pg_vector = PGVector(embedding_function=EmbeddingsFunAdapter(self.embed_model),
|
|
collection_name=self.kb_name,
|
|
distance_strategy=DistanceStrategy.EUCLIDEAN,
|
|
connection=PGKBService.engine,
|
|
connection_string=kbs_config.get("pg").get("connection_uri"))
|
|
|
|
def get_doc_by_ids(self, ids: List[str]) -> List[Document]:
|
|
with Session(PGKBService.engine) as session:
|
|
stmt = text("SELECT document, cmetadata FROM langchain_pg_embedding WHERE collection_id in :ids")
|
|
results = [Document(page_content=row[0], metadata=row[1]) for row in
|
|
session.execute(stmt, {'ids': ids}).fetchall()]
|
|
return results
|
|
def del_doc_by_ids(self, ids: List[str]) -> bool:
|
|
return super().del_doc_by_ids(ids)
|
|
|
|
def do_init(self):
|
|
self._load_pg_vector()
|
|
|
|
def do_create_kb(self):
|
|
pass
|
|
|
|
def vs_type(self) -> str:
|
|
return SupportedVSType.PG
|
|
|
|
def do_drop_kb(self):
|
|
with Session(PGKBService.engine) as session:
|
|
session.execute(text(f'''
|
|
-- 删除 langchain_pg_embedding 表中关联到 langchain_pg_collection 表中 的记录
|
|
DELETE FROM langchain_pg_embedding
|
|
WHERE collection_id IN (
|
|
SELECT uuid FROM langchain_pg_collection WHERE name = '{self.kb_name}'
|
|
);
|
|
-- 删除 langchain_pg_collection 表中 记录
|
|
DELETE FROM langchain_pg_collection WHERE name = '{self.kb_name}';
|
|
'''))
|
|
session.commit()
|
|
shutil.rmtree(self.kb_path)
|
|
|
|
def do_search(self, query: str, top_k: int, score_threshold: float):
|
|
embed_func = EmbeddingsFunAdapter(self.embed_model)
|
|
embeddings = embed_func.embed_query(query)
|
|
docs = self.pg_vector.similarity_search_with_score_by_vector(embeddings, top_k)
|
|
return score_threshold_process(score_threshold, top_k, docs)
|
|
|
|
def do_add_doc(self, docs: List[Document], **kwargs) -> List[Dict]:
|
|
ids = self.pg_vector.add_documents(docs)
|
|
doc_infos = [{"id": id, "metadata": doc.metadata} for id, doc in zip(ids, docs)]
|
|
return doc_infos
|
|
|
|
def do_delete_doc(self, kb_file: KnowledgeFile, **kwargs):
|
|
with Session(PGKBService.engine) as session:
|
|
filepath = kb_file.filepath.replace('\\', '\\\\')
|
|
session.execute(
|
|
text(
|
|
''' DELETE FROM langchain_pg_embedding WHERE cmetadata::jsonb @> '{"source": "filepath"}'::jsonb;'''.replace(
|
|
"filepath", filepath)))
|
|
session.commit()
|
|
|
|
def do_clear_vs(self):
|
|
self.pg_vector.delete_collection()
|
|
self.pg_vector.create_collection()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
from server.db.base import Base, engine
|
|
|
|
# Base.metadata.create_all(bind=engine)
|
|
pGKBService = PGKBService("test")
|
|
# pGKBService.create_kb()
|
|
# pGKBService.add_doc(KnowledgeFile("README.md", "test"))
|
|
# pGKBService.delete_doc(KnowledgeFile("README.md", "test"))
|
|
# pGKBService.drop_kb()
|
|
print(pGKBService.get_doc_by_ids(["f1e51390-3029-4a19-90dc-7118aaa25772"]))
|
|
# print(pGKBService.search_docs("如何启动api服务"))
|