175 lines
5.6 KiB
Python
175 lines
5.6 KiB
Python
import os
|
|
import sqlite3
|
|
import datetime
|
|
import shutil
|
|
from langchain.vectorstores import FAISS
|
|
from server.knowledge_base.utils import (get_vs_path, get_kb_path, get_doc_path,
|
|
refresh_vs_cache, load_embeddings)
|
|
from configs.model_config import (KB_ROOT_PATH, embedding_model_dict, EMBEDDING_MODEL,
|
|
EMBEDDING_DEVICE)
|
|
from server.utils import torch_gc
|
|
from typing import List
|
|
from langchain.docstore.document import Document
|
|
|
|
|
|
SUPPORTED_VS_TYPES = ["faiss", "milvus"]
|
|
DB_ROOT = os.path.join(KB_ROOT_PATH, "info.db")
|
|
|
|
|
|
def list_kbs_from_db():
|
|
conn = sqlite3.connect(DB_ROOT)
|
|
c = conn.cursor()
|
|
c.execute(f'''SELECT KB_NAME
|
|
FROM KNOWLEDGE_BASE
|
|
WHERE FILE_COUNT>0 ''')
|
|
kbs = [i[0] for i in c.fetchall() if i]
|
|
conn.commit()
|
|
conn.close()
|
|
return kbs
|
|
|
|
|
|
def add_kb_to_db(kb_name, vs_type, embed_model):
|
|
conn = sqlite3.connect(DB_ROOT)
|
|
c = conn.cursor()
|
|
# Create table
|
|
c.execute('''CREATE TABLE if not exists KNOWLEDGE_BASE
|
|
(ID INTEGER PRIMARY KEY AUTOINCREMENT,
|
|
KB_NAME TEXT,
|
|
VS_TYPE TEXT,
|
|
EMBED_MODEL TEXT,
|
|
FILE_COUNT INTEGER,
|
|
CREATE_TIME DATETIME) ''')
|
|
# Insert a row of data
|
|
c.execute(f"""INSERT INTO KNOWLEDGE_BASE
|
|
(KB_NAME, VS_TYPE, EMBED_MODEL, FILE_COUNT, CREATE_TIME)
|
|
VALUES
|
|
('{kb_name}','{vs_type}','{embed_model}',
|
|
0,'{datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}')""")
|
|
conn.commit()
|
|
conn.close()
|
|
|
|
|
|
def kb_exists(kb_name):
|
|
conn = sqlite3.connect(DB_ROOT)
|
|
c = conn.cursor()
|
|
c.execute(f'''SELECT COUNT(*)
|
|
FROM KNOWLEDGE_BASE
|
|
WHERE KB_NAME="{kb_name}" ''')
|
|
status = True if c.fetchone()[0] else False
|
|
conn.commit()
|
|
conn.close()
|
|
return status
|
|
|
|
|
|
def load_kb_from_db(kb_name):
|
|
conn = sqlite3.connect(DB_ROOT)
|
|
c = conn.cursor()
|
|
c.execute(f'''SELECT KB_NAME, VS_TYPE, EMBED_MODEL
|
|
FROM KNOWLEDGE_BASE
|
|
WHERE KB_NAME="{kb_name}" ''')
|
|
resp = c.fetchone()
|
|
if resp:
|
|
kb_name, vs_type, embed_model = resp
|
|
else:
|
|
kb_name, vs_type, embed_model = None, None, None
|
|
conn.commit()
|
|
conn.close()
|
|
return kb_name, vs_type, embed_model
|
|
|
|
|
|
def delete_kb_from_db(kb_name):
|
|
conn = sqlite3.connect(DB_ROOT)
|
|
c = conn.cursor()
|
|
c.execute(f'''DELETE
|
|
FROM KNOWLEDGE_BASE
|
|
WHERE KB_NAME="{kb_name}" ''')
|
|
conn.commit()
|
|
conn.close()
|
|
return True
|
|
|
|
|
|
class KnowledgeBase:
|
|
def __init__(self,
|
|
knowledge_base_name: str,
|
|
vector_store_type: str = "faiss",
|
|
embed_model: str = EMBEDDING_MODEL,
|
|
):
|
|
self.kb_name = knowledge_base_name
|
|
if vector_store_type not in SUPPORTED_VS_TYPES:
|
|
raise ValueError(f"暂未支持向量库类型 {vector_store_type}")
|
|
self.vs_type = vector_store_type
|
|
if embed_model not in embedding_model_dict.keys():
|
|
raise ValueError(f"暂未支持embedding模型 {embed_model}")
|
|
self.embed_model = embed_model
|
|
self.kb_path = get_kb_path(self.kb_name)
|
|
self.doc_path = get_doc_path(self.kb_name)
|
|
if self.vs_type in ["faiss"]:
|
|
self.vs_path = get_vs_path(self.kb_name)
|
|
elif self.vs_type in ["milvus"]:
|
|
pass
|
|
|
|
def create(self):
|
|
if not os.path.exists(self.doc_path):
|
|
os.makedirs(self.doc_path)
|
|
if self.vs_type in ["faiss"]:
|
|
if not os.path.exists(self.vs_path):
|
|
os.makedirs(self.vs_path)
|
|
add_kb_to_db(self.kb_name, self.vs_type, self.embed_model)
|
|
elif self.vs_type in ["milvus"]:
|
|
# TODO: 创建milvus库
|
|
pass
|
|
return True
|
|
|
|
def add_file(self, docs: List[Document]):
|
|
vs_path = get_vs_path(self.kb_name)
|
|
embeddings = load_embeddings(embedding_model_dict[self.embed_model], EMBEDDING_DEVICE)
|
|
if self.vs_type in ["faiss"]:
|
|
if os.path.exists(vs_path) and "index.faiss" in os.listdir(vs_path):
|
|
vector_store = FAISS.load_local(vs_path, embeddings)
|
|
vector_store.add_documents(docs)
|
|
torch_gc()
|
|
else:
|
|
if not os.path.exists(vs_path):
|
|
os.makedirs(vs_path)
|
|
vector_store = FAISS.from_documents(docs, embeddings) # docs 为Document列表
|
|
torch_gc()
|
|
vector_store.save_local(vs_path)
|
|
refresh_vs_cache(self.kb_name)
|
|
elif self.vs_type in ["milvus"]:
|
|
# TODO: 向milvus库中增加文件
|
|
pass
|
|
|
|
@classmethod
|
|
def exists(cls,
|
|
knowledge_base_name: str):
|
|
return kb_exists(knowledge_base_name)
|
|
|
|
@classmethod
|
|
def load(cls,
|
|
knowledge_base_name: str):
|
|
kb_name, vs_type, embed_model = load_kb_from_db(knowledge_base_name)
|
|
return cls(kb_name, vs_type, embed_model)
|
|
|
|
@classmethod
|
|
def delete(cls,
|
|
knowledge_base_name: str):
|
|
kb = cls.load(knowledge_base_name)
|
|
if kb.vs_type in ["faiss"]:
|
|
shutil.rmtree(kb.kb_path)
|
|
elif kb.vs_type in ["milvus"]:
|
|
# TODO: 删除milvus库
|
|
pass
|
|
status = delete_kb_from_db(knowledge_base_name)
|
|
return status
|
|
|
|
@classmethod
|
|
def list_kbs(cls):
|
|
return list_kbs_from_db()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# kb = KnowledgeBase("123", "faiss")
|
|
# kb.create()
|
|
kb = KnowledgeBase.load(knowledge_base_name="123")
|
|
print()
|