84 lines
3.1 KiB
Python
84 lines
3.1 KiB
Python
from fastapi import Body
|
|
from fastapi.responses import StreamingResponse
|
|
from configs.model_config import (llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE,
|
|
embedding_model_dict, EMBEDDING_MODEL, EMBEDDING_DEVICE)
|
|
from server.chat.utils import wrap_done
|
|
from langchain.chat_models import ChatOpenAI
|
|
from langchain import LLMChain
|
|
from langchain.callbacks import AsyncIteratorCallbackHandler
|
|
from typing import AsyncIterable
|
|
import asyncio
|
|
from langchain.prompts import PromptTemplate
|
|
from langchain.vectorstores import FAISS
|
|
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
|
from server.knowledge_base.utils import get_vs_path
|
|
from functools import lru_cache
|
|
|
|
|
|
@lru_cache(1)
|
|
def load_embeddings(model: str, device: str):
|
|
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[model],
|
|
model_kwargs={'device': device})
|
|
return embeddings
|
|
|
|
|
|
@lru_cache(1)
|
|
def load_vector_store(
|
|
knowledge_base_name: str,
|
|
embedding_model: str,
|
|
embedding_device: str,
|
|
):
|
|
embeddings = load_embeddings(embedding_model, embedding_device)
|
|
vs_path = get_vs_path(knowledge_base_name)
|
|
search_index = FAISS.load_local(vs_path, embeddings)
|
|
return search_index
|
|
|
|
|
|
def lookup_vs(
|
|
query: str,
|
|
knowledge_base_name: str,
|
|
top_k: int = 3,
|
|
embedding_model: str = EMBEDDING_MODEL,
|
|
embedding_device: str = EMBEDDING_DEVICE,
|
|
):
|
|
search_index = load_vector_store(knowledge_base_name, embedding_model, embedding_device)
|
|
docs = search_index.similarity_search(query, k=top_k)
|
|
return docs
|
|
|
|
|
|
def knowledge_base_chat(query: str = Body(..., description="用户输入", example="你好"),
|
|
knowledge_base_name: str = Body(..., description="知识库名称", example="samples"),
|
|
top_k: int = Body(3, description="匹配向量数"),
|
|
):
|
|
async def knowledge_base_chat_iterator(query: str,
|
|
knowledge_base_name: str,
|
|
) -> AsyncIterable[str]:
|
|
callback = AsyncIteratorCallbackHandler()
|
|
model = ChatOpenAI(
|
|
streaming=True,
|
|
verbose=True,
|
|
callbacks=[callback],
|
|
openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
|
|
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
|
|
model_name=LLM_MODEL
|
|
)
|
|
|
|
docs = lookup_vs(query, knowledge_base_name, top_k)
|
|
context = "\n".join([doc.page_content for doc in docs])
|
|
prompt = PromptTemplate(template=PROMPT_TEMPLATE, input_variables=["context", "question"])
|
|
|
|
chain = LLMChain(prompt=prompt, llm=model)
|
|
|
|
# Begin a task that runs in the background.
|
|
task = asyncio.create_task(wrap_done(
|
|
chain.acall({"context": context, "question": query}),
|
|
callback.done),
|
|
)
|
|
|
|
async for token in callback.aiter():
|
|
# Use server-sent-events to stream the response
|
|
yield token
|
|
await task
|
|
|
|
return StreamingResponse(knowledge_base_chat_iterator(query, knowledge_base_name), media_type="text/event-stream")
|