Langchain-Chatchat/server/model_workers/azure.py

118 lines
4.1 KiB
Python

import sys
from fastchat.conversation import Conversation
from server.model_workers.base import ApiModelWorker
from server.utils import get_model_worker_config, get_httpx_client
from fastchat import conversation as conv
import json
from typing import List, Dict
from configs import TEMPERATURE
def request_azure_api(
messages: List[Dict[str, str]],
resource_name: str = None,
api_key: str = None,
deployment_name: str = None,
api_version: str = "2023-07-01-preview",
temperature: float = TEMPERATURE,
max_tokens: int = None,
model_name: str = "azure-api",
):
config = get_model_worker_config(model_name)
data = dict(
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stream=True,
)
url = f"https://{resource_name}.openai.azure.com/openai/deployments/{deployment_name}/chat/completions?api-version={api_version}"
headers = {
'Content-Type': 'application/json',
'Accept': 'application/json',
'api-key': api_key,
}
with get_httpx_client() as client:
with client.stream("POST", url, headers=headers, json=data) as response:
for line in response.iter_lines():
if not line.strip() or "[DONE]" in line:
continue
if line.startswith("data: "):
line = line[6:]
resp = json.loads(line)
yield resp
class AzureWorker(ApiModelWorker):
def __init__(
self,
*,
controller_addr: str,
worker_addr: str,
model_names: List[str] = ["azure-api"],
version: str = "gpt-35-turbo",
**kwargs,
):
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
kwargs.setdefault("context_len", 8192)
super().__init__(**kwargs)
config = self.get_config()
self.resource_name = config.get("resource_name")
self.api_key = config.get("api_key")
self.api_version = config.get("api_version")
self.version = version
self.deployment_name = config.get("deployment_name")
def generate_stream_gate(self, params):
super().generate_stream_gate(params)
messages = self.prompt_to_messages(params["prompt"])
text = ""
for resp in request_azure_api(messages=messages,
resource_name=self.resource_name,
api_key=self.api_key,
api_version=self.api_version,
deployment_name=self.deployment_name,
temperature=params.get("temperature"),
max_tokens=params.get("max_tokens")):
if choices := resp["choices"]:
if chunk := choices[0].get("delta", {}).get("content"):
text += chunk
yield json.dumps(
{
"error_code": 0,
"text": text
},
ensure_ascii=False
).encode() + b"\0"
def get_embeddings(self, params):
# TODO: 支持embeddings
print("embedding")
print(params)
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
# TODO: 确认模板是否需要修改
return conv.Conversation(
name=self.model_names[0],
system_message="",
messages=[],
roles=["user", "assistant"],
sep="\n### ",
stop_str="###",
)
if __name__ == "__main__":
import uvicorn
from server.utils import MakeFastAPIOffline
from fastchat.serve.base_model_worker import app
worker = AzureWorker(
controller_addr="http://127.0.0.1:20001",
worker_addr="http://127.0.0.1:21008",
)
sys.modules["fastchat.serve.model_worker"].worker = worker
MakeFastAPIOffline(app)
uvicorn.run(app, port=21008)