Langchain-Chatchat/server/chat/agent_chat.py

74 lines
3.5 KiB
Python

from langchain.memory import ConversationBufferWindowMemory
from server.agent.tools import tools, tool_names
from langchain.agents import AgentExecutor, LLMSingleActionAgent
from server.agent.custom_template import CustomOutputParser, prompt
from fastapi import Body
from fastapi.responses import StreamingResponse
from configs.model_config import LLM_MODEL, TEMPERATURE, HISTORY_LEN
from server.utils import wrap_done, get_ChatOpenAI
from langchain import LLMChain
from langchain.callbacks import AsyncIteratorCallbackHandler
from langchain.callbacks.streaming_aiter_final_only import AsyncFinalIteratorCallbackHandler
from typing import AsyncIterable
import asyncio
from langchain.prompts.chat import ChatPromptTemplate
from typing import List
from server.chat.utils import History
memory = ConversationBufferWindowMemory(k=HISTORY_LEN)
async def agent_chat(query: str = Body(..., description="用户输入", examples=["恼羞成怒"]),
history: List[History] = Body([],
description="历史对话",
examples=[[
{"role": "user", "content": "我们来玩成语接龙,我先来,生龙活虎"},
{"role": "assistant", "content": "虎头虎脑"}]]
),
stream: bool = Body(False, description="流式输出"),
model_name: str = Body(LLM_MODEL, description="LLM 模型名称。"),
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", gt=0.0, le=1.0),
# top_p: float = Body(TOP_P, description="LLM 核采样。勿与temperature同时设置", gt=0.0, lt=1.0),
):
history = [History.from_data(h) for h in history]
async def chat_iterator(query: str,
history: List[History] = [],
model_name: str = LLM_MODEL,
) -> AsyncIterable[str]:
callback = AsyncFinalIteratorCallbackHandler()
model = get_ChatOpenAI(
model_name=model_name,
temperature=temperature,
callbacks=[callback],
)
output_parser = CustomOutputParser()
llm_chain = LLMChain(llm=model, prompt=prompt)
agent = LLMSingleActionAgent(
llm_chain=llm_chain,
output_parser=output_parser,
stop=["\nObservation:"],
allowed_tools=tool_names
)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory,
callbacks=[callback])
input_msg = History(role="user", content="{{ input }}").to_msg_template(False)
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_template() for i in history] + [input_msg])
task = asyncio.create_task(wrap_done(
agent_executor.acall(query),
callback.done),
)
if stream:
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield token
else:
answer = ""
async for token in callback.aiter():
answer += token
yield answer
await task
return StreamingResponse(chat_iterator(query, history, model_name),
media_type="text/event-stream")