Langchain-Chatchat/server/knowledge_base/migrate.py

152 lines
6.2 KiB
Python

from configs import (EMBEDDING_MODEL, DEFAULT_VS_TYPE, ZH_TITLE_ENHANCE,
logger, log_verbose)
from server.knowledge_base.utils import (get_file_path, list_kbs_from_folder,
list_files_from_folder,files2docs_in_thread,
KnowledgeFile,)
from server.knowledge_base.kb_service.base import KBServiceFactory, SupportedVSType
from server.db.repository.knowledge_file_repository import add_file_to_db
from server.db.base import Base, engine
import os
from typing import Literal, Any, List
def create_tables():
Base.metadata.create_all(bind=engine)
def reset_tables():
Base.metadata.drop_all(bind=engine)
create_tables()
def file_to_kbfile(kb_name: str, files: List[str]) -> List[KnowledgeFile]:
kb_files = []
for file in files:
try:
kb_file = KnowledgeFile(filename=file, knowledge_base_name=kb_name)
kb_files.append(kb_file)
except Exception as e:
msg = f"{e},已跳过"
logger.error(f'{e.__class__.__name__}: {msg}',
exc_info=e if log_verbose else None)
return kb_files
def folder2db(
kb_name: str,
mode: Literal["recreate_vs", "fill_info_only", "update_in_db", "increament"],
vs_type: Literal["faiss", "milvus", "pg", "chromadb"] = DEFAULT_VS_TYPE,
embed_model: str = EMBEDDING_MODEL,
chunk_size: int = -1,
chunk_overlap: int = -1,
zh_title_enhance: bool = ZH_TITLE_ENHANCE,
):
'''
use existed files in local folder to populate database and/or vector store.
set parameter `mode` to:
recreate_vs: recreate all vector store and fill info to database using existed files in local folder
fill_info_only: do not create vector store, fill info to db using existed files only
update_in_db: update vector store and database info using local files that existed in database only
increament: create vector store and database info for local files that not existed in database only
'''
kb = KBServiceFactory.get_service(kb_name, vs_type, embed_model)
kb.create_kb()
if mode == "recreate_vs":
files_count = kb.count_files()
print(f"知识库 {kb_name} 中共有 {files_count} 个文档。\n即将清除向量库。")
kb.clear_vs()
files_count = kb.count_files()
print(f"清理后,知识库 {kb_name} 中共有 {files_count} 个文档。")
kb_files = file_to_kbfile(kb_name, list_files_from_folder(kb_name))
for success, result in files2docs_in_thread(kb_files,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
zh_title_enhance=zh_title_enhance):
if success:
_, filename, docs = result
print(f"正在将 {kb_name}/{filename} 添加到向量库,共包含{len(docs)}条文档")
kb_file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name)
kb.add_doc(kb_file=kb_file, docs=docs, not_refresh_vs_cache=True)
else:
print(result)
kb.save_vector_store()
elif mode == "fill_info_only":
files = list_files_from_folder(kb_name)
kb_files = file_to_kbfile(kb_name, files)
for kb_file in kb_files:
add_file_to_db(kb_file)
print(f"已将 {kb_name}/{kb_file.filename} 添加到数据库")
elif mode == "update_in_db":
files = kb.list_files()
kb_files = file_to_kbfile(kb_name, files)
for kb_file in kb_files:
kb.update_doc(kb_file, not_refresh_vs_cache=True)
kb.save_vector_store()
elif mode == "increament":
db_files = kb.list_files()
folder_files = list_files_from_folder(kb_name)
files = list(set(folder_files) - set(db_files))
kb_files = file_to_kbfile(kb_name, files)
for success, result in files2docs_in_thread(kb_files,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
zh_title_enhance=zh_title_enhance):
if success:
_, filename, docs = result
print(f"正在将 {kb_name}/{filename} 添加到向量库")
kb_file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name)
kb.add_doc(kb_file=kb_file, docs=docs, not_refresh_vs_cache=True)
else:
print(result)
kb.save_vector_store()
else:
print(f"unspported migrate mode: {mode}")
def recreate_all_vs(
vs_type: Literal["faiss", "milvus", "pg", "chromadb"] = DEFAULT_VS_TYPE,
embed_mode: str = EMBEDDING_MODEL,
**kwargs: Any,
):
'''
used to recreate a vector store or change current vector store to another type or embed_model
'''
for kb_name in list_kbs_from_folder():
folder2db(kb_name, "recreate_vs", vs_type, embed_mode, **kwargs)
def prune_db_files(kb_name: str):
'''
delete files in database that not existed in local folder.
it is used to delete database files after user deleted some doc files in file browser
'''
kb = KBServiceFactory.get_service_by_name(kb_name)
if kb.exists():
files_in_db = kb.list_files()
files_in_folder = list_files_from_folder(kb_name)
files = list(set(files_in_db) - set(files_in_folder))
kb_files = file_to_kbfile(kb_name, files)
for kb_file in kb_files:
kb.delete_doc(kb_file, not_refresh_vs_cache=True)
kb.save_vector_store()
return kb_files
def prune_folder_files(kb_name: str):
'''
delete doc files in local folder that not existed in database.
is is used to free local disk space by delete unused doc files.
'''
kb = KBServiceFactory.get_service_by_name(kb_name)
if kb.exists():
files_in_db = kb.list_files()
files_in_folder = list_files_from_folder(kb_name)
files = list(set(files_in_folder) - set(files_in_db))
for file in files:
os.remove(get_file_path(kb_name, file))
return files