191 lines
8.4 KiB
Python
191 lines
8.4 KiB
Python
|
||
from abc import ABC
|
||
from langchain.chains.base import Chain
|
||
from typing import Any, Dict, List, Optional, Generator, Union
|
||
from langchain.callbacks.manager import CallbackManagerForChainRun
|
||
from transformers.generation.logits_process import LogitsProcessor
|
||
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList
|
||
from models.loader import LoaderCheckPoint
|
||
from models.base import (BaseAnswer,
|
||
AnswerResult,
|
||
AnswerResultStream,
|
||
AnswerResultQueueSentinelTokenListenerQueue)
|
||
import torch
|
||
import transformers
|
||
|
||
|
||
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
||
def __call__(self, input_ids: Union[torch.LongTensor, list],
|
||
scores: Union[torch.FloatTensor, list]) -> torch.FloatTensor:
|
||
# llama-cpp模型返回的是list,为兼容性考虑,需要判断input_ids和scores的类型,将list转换为torch.Tensor
|
||
input_ids = torch.tensor(input_ids) if isinstance(input_ids, list) else input_ids
|
||
scores = torch.tensor(scores) if isinstance(scores, list) else scores
|
||
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
||
scores.zero_()
|
||
scores[..., 5] = 5e4
|
||
return scores
|
||
|
||
|
||
class LLamaLLMChain(BaseAnswer, Chain, ABC):
|
||
checkPoint: LoaderCheckPoint = None
|
||
# history = []
|
||
history_len: int = 3
|
||
max_new_tokens: int = 500
|
||
num_beams: int = 1
|
||
temperature: float = 0.5
|
||
top_p: float = 0.4
|
||
top_k: int = 10
|
||
repetition_penalty: float = 1.2
|
||
encoder_repetition_penalty: int = 1
|
||
min_length: int = 0
|
||
logits_processor: LogitsProcessorList = None
|
||
stopping_criteria: Optional[StoppingCriteriaList] = None
|
||
streaming_key: str = "streaming" #: :meta private:
|
||
history_key: str = "history" #: :meta private:
|
||
prompt_key: str = "prompt" #: :meta private:
|
||
output_key: str = "answer_result_stream" #: :meta private:
|
||
|
||
def __init__(self, checkPoint: LoaderCheckPoint = None):
|
||
super().__init__()
|
||
self.checkPoint = checkPoint
|
||
|
||
@property
|
||
def _chain_type(self) -> str:
|
||
return "LLamaLLMChain"
|
||
|
||
@property
|
||
def input_keys(self) -> List[str]:
|
||
"""Will be whatever keys the prompt expects.
|
||
|
||
:meta private:
|
||
"""
|
||
return [self.prompt_key]
|
||
|
||
@property
|
||
def output_keys(self) -> List[str]:
|
||
"""Will always return text key.
|
||
|
||
:meta private:
|
||
"""
|
||
return [self.output_key]
|
||
|
||
@property
|
||
def _check_point(self) -> LoaderCheckPoint:
|
||
return self.checkPoint
|
||
|
||
def encode(self, prompt, add_special_tokens=True, add_bos_token=True, truncation_length=None):
|
||
input_ids = self.checkPoint.tokenizer.encode(str(prompt), return_tensors='pt',
|
||
add_special_tokens=add_special_tokens)
|
||
# This is a hack for making replies more creative.
|
||
if not add_bos_token and input_ids[0][0] == self.checkPoint.tokenizer.bos_token_id:
|
||
input_ids = input_ids[:, 1:]
|
||
|
||
# Llama adds this extra token when the first character is '\n', and this
|
||
# compromises the stopping criteria, so we just remove it
|
||
if type(self.checkPoint.tokenizer) is transformers.LlamaTokenizer and input_ids[0][0] == 29871:
|
||
input_ids = input_ids[:, 1:]
|
||
|
||
# Handling truncation
|
||
if truncation_length is not None:
|
||
input_ids = input_ids[:, -truncation_length:]
|
||
|
||
return input_ids.cuda()
|
||
|
||
def decode(self, output_ids):
|
||
reply = self.checkPoint.tokenizer.decode(output_ids, skip_special_tokens=True)
|
||
return reply
|
||
|
||
# 将历史对话数组转换为文本格式
|
||
def history_to_text(self, query, history):
|
||
"""
|
||
历史对话软提示
|
||
这段代码首先定义了一个名为 history_to_text 的函数,用于将 self.history
|
||
数组转换为所需的文本格式。然后,我们将格式化后的历史文本
|
||
再用 self.encode 将其转换为向量表示。最后,将历史对话向量与当前输入的对话向量拼接在一起。
|
||
:return:
|
||
"""
|
||
formatted_history = ''
|
||
history = history[-self.history_len:] if self.history_len > 0 else []
|
||
if len(history) > 0:
|
||
for i, (old_query, response) in enumerate(history):
|
||
formatted_history += "### Human:{}\n### Assistant:{}\n".format(old_query, response)
|
||
formatted_history += "### Human:{}\n### Assistant:".format(query)
|
||
return formatted_history
|
||
|
||
def _call(
|
||
self,
|
||
inputs: Dict[str, Any],
|
||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||
) -> Dict[str, Generator]:
|
||
generator = self.generatorAnswer(inputs=inputs, run_manager=run_manager)
|
||
return {self.output_key: generator}
|
||
|
||
def _generate_answer(self,
|
||
inputs: Dict[str, Any],
|
||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||
generate_with_callback: AnswerResultStream = None) -> None:
|
||
|
||
history = inputs[self.history_key]
|
||
streaming = inputs[self.streaming_key]
|
||
prompt = inputs[self.prompt_key]
|
||
print(f"__call:{prompt}")
|
||
|
||
# Create the StoppingCriteriaList with the stopping strings
|
||
self.stopping_criteria = transformers.StoppingCriteriaList()
|
||
# 定义模型stopping_criteria 队列,在每次响应时将 torch.LongTensor, torch.FloatTensor同步到AnswerResult
|
||
listenerQueue = AnswerResultQueueSentinelTokenListenerQueue()
|
||
self.stopping_criteria.append(listenerQueue)
|
||
# TODO 需要实现chat对话模块和注意力模型,目前_call为langchain的LLM拓展的api,默认为无提示词模式,如果需要操作注意力模型,可以参考chat_glm的实现
|
||
soft_prompt = self.history_to_text(query=prompt, history=history)
|
||
if self.logits_processor is None:
|
||
self.logits_processor = LogitsProcessorList()
|
||
self.logits_processor.append(InvalidScoreLogitsProcessor())
|
||
|
||
gen_kwargs = {
|
||
"max_new_tokens": self.max_new_tokens,
|
||
"num_beams": self.num_beams,
|
||
"top_p": self.top_p,
|
||
"do_sample": True,
|
||
"top_k": self.top_k,
|
||
"repetition_penalty": self.repetition_penalty,
|
||
"encoder_repetition_penalty": self.encoder_repetition_penalty,
|
||
"min_length": self.min_length,
|
||
"temperature": self.temperature,
|
||
"eos_token_id": self.checkPoint.tokenizer.eos_token_id,
|
||
"logits_processor": self.logits_processor}
|
||
|
||
# 向量转换
|
||
input_ids = self.encode(soft_prompt, add_bos_token=self.checkPoint.tokenizer.add_bos_token,
|
||
truncation_length=self.max_new_tokens)
|
||
|
||
gen_kwargs.update({'inputs': input_ids})
|
||
# 观测输出
|
||
gen_kwargs.update({'stopping_criteria': self.stopping_criteria})
|
||
# llama-cpp模型的参数与transformers的参数字段有较大差异,直接调用会返回不支持的字段错误
|
||
# 因此需要先判断模型是否是llama-cpp模型,然后取gen_kwargs与模型generate方法字段的交集
|
||
# 仅将交集字段传给模型以保证兼容性
|
||
# todo llama-cpp模型在本框架下兼容性较差,后续可以考虑重写一个llama_cpp_llm.py模块
|
||
if "llama_cpp" in self.checkPoint.model.__str__():
|
||
import inspect
|
||
|
||
common_kwargs_keys = set(inspect.getfullargspec(self.checkPoint.model.generate).args) & set(
|
||
gen_kwargs.keys())
|
||
common_kwargs = {key: gen_kwargs[key] for key in common_kwargs_keys}
|
||
# ? llama-cpp模型的generate方法似乎只接受.cpu类型的输入,响应很慢,慢到哭泣
|
||
# ?为什么会不支持GPU呢,不应该啊?
|
||
output_ids = torch.tensor(
|
||
[list(self.checkPoint.model.generate(input_id_i.cpu(), **common_kwargs)) for input_id_i in input_ids])
|
||
|
||
else:
|
||
output_ids = self.checkPoint.model.generate(**gen_kwargs)
|
||
new_tokens = len(output_ids[0]) - len(input_ids[0])
|
||
reply = self.decode(output_ids[0][-new_tokens:])
|
||
print(f"response:{reply}")
|
||
print(f"+++++++++++++++++++++++++++++++++++")
|
||
|
||
answer_result = AnswerResult()
|
||
history += [[prompt, reply]]
|
||
answer_result.history = history
|
||
answer_result.llm_output = {"answer": reply}
|
||
generate_with_callback(answer_result)
|