39 lines
1.8 KiB
Python
39 lines
1.8 KiB
Python
from langchain.text_splitter import CharacterTextSplitter
|
||
import re
|
||
from typing import List
|
||
from modelscope.pipelines import pipeline
|
||
|
||
|
||
p = pipeline(
|
||
task="document-segmentation",
|
||
model='damo/nlp_bert_document-segmentation_chinese-base',
|
||
device="cpu")
|
||
|
||
class ChineseTextSplitter(CharacterTextSplitter):
|
||
def __init__(self, pdf: bool = False, **kwargs):
|
||
super().__init__(**kwargs)
|
||
self.pdf = pdf
|
||
|
||
def split_text(self, text: str, use_document_segmentation: bool=False) -> List[str]:
|
||
# use_document_segmentation参数指定是否用语义切分文档,此处采取的文档语义分割模型为达摩院开源的nlp_bert_document-segmentation_chinese-base,论文见https://arxiv.org/abs/2107.09278
|
||
# 如果使用模型进行文档语义切分,那么需要安装modelscope[nlp]:pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
|
||
# 考虑到使用了三个模型,可能对于低配置gpu不太友好,因此这里将模型load进cpu计算,有需要的话可以替换device为自己的显卡id
|
||
if self.pdf:
|
||
text = re.sub(r"\n{3,}", "\n", text)
|
||
text = re.sub('\s', ' ', text)
|
||
text = text.replace("\n\n", "")
|
||
if use_document_segmentation:
|
||
result = p(documents=text)
|
||
sent_list = [i for i in result["text"].split("\n\t") if i]
|
||
else:
|
||
sent_sep_pattern = re.compile('([﹒﹔﹖﹗.。!?]["’”」』]{0,2}|(?=["‘“「『]{1,2}|$))') # del :;
|
||
sent_list = []
|
||
for ele in sent_sep_pattern.split(text):
|
||
if sent_sep_pattern.match(ele) and sent_list:
|
||
sent_list[-1] += ele
|
||
elif ele:
|
||
sent_list.append(ele)
|
||
return sent_list
|
||
|
||
|